Publications

Export 160 results:
[ Autor(Desc)] Titel Typ Jahr
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
K
Kortenkamp, U., & Richter-Gebert J. (2001).  Decision complexity in Dynamic Geometry. (Wang, D., Ed.).Proceedings of ADG 2000. 167–172.PDF icon KortenkampRichter-Ge-DCDG-2001a..pdf (45.2 KB)
Kortenkamp, U. (2008).  Algorithmen im Mathematikunterricht. (Kortenkamp, U., Weigand H-G., & Weth T., Ed.).Informatische Ideen im Mathematikunterricht. Bericht über die 23. Arbeitstagung des Arbeitskreises Mathematikunterricht und Informatik. 77–86.
Kortenkamp, U. H., & Richter-Gebert J. (1999).  Euklidische und Nicht-Euklidische Geometrie mit Cinderella. (Weth, T., Ed.).Tagungsband zum Nürnberger Kolloquium zur Didaktik der Mathematik 1999. PDF icon KortenkampRichter-Ge-ENGC-1999a.pdf (313.69 KB)
Kortenkamp, U., Modrow E., Oldenburg R., Poloczek J., & Rabel M. (2009).  Objektorientierte Modellierung – aber wann und wie?. LOG-IN. 22-28.PDF icon KortenkampModrow-OMAW-2009a.PDF (114.51 KB)
Kortenkamp, U., Bescherer C., & Spannagel C. (2010).  Schnittstellenaktivität Hochschul-Mathematikdidaktik. Beiträge zum Mathematikunterricht. Vorträge auf der 44. Tagung für Didaktik der Mathematik in München. 61-68.PDF icon KortenkampBescherer-SH-2010a.pdf (91.99 KB)
Kortenkamp, U. (2005).  Experimentieren und Publizieren. (Bender, P., Herget W., Weigand H-G., & Weth T., Ed.).WWW und Mathematik - Lehren und Lernen im Internet, Tagungsband der 21. Arbeitstagung des Arbeitskreis Mathematikunterricht und Informatik in Dillingen/Donau. 120-126.PDF icon Kortenkamp-EP-2005a..pdf (453.5 KB)
Kortenkamp, U. (1997).  Every simplicial polytope with at most d+4 vertices is a quotient of a neighborly polytope. Discrete & Computational Geometry. 18, 455–462.
Kortenkamp, U., & Fest A. (2008).  From CAS/DGS Integration to Algorithms in Educational Math Software. Proceedings of ATCM 08.
Kortenkamp, U. H., & Richter-Gebert J. (1998).  Geometry and education in the Internet age. (Ottmann, T., & Tomek I., Ed.).Ed-Media & Ed-Telecom 98. Proceedings of the Tenth World Conference on Educational Multimedia and Hypermedia & World Conference on Educational Telecommunications, Freiburg, Germany, June 20-25, 1998. PDF icon KortenkampRichter-Ge-GEI-1998a.pdf (417.82 KB)
Kuzle, A., & Artigue M. (2012).  Characterization of preservice teachers’ patterns of metacognitive behavior and the use of Geometer’s Sketchpad. The didactics of mathematics: Approaches and issues. A Hommage to Michèle Artigue.
Kuzle, A. (Submitted).  Unpacking the nature of problem solving processes in a dynamic geometry environment: Different technological effects. Journal für Mathematik-Didaktik.
Kuzle, A. (2012).  Investigating and communicating technology mathematics problem solving experience of two preservice teachers. Acta Didactica Napocensia. 5(1), 1–10.
Kuzle, A. (Submitted).  Nature of metacognition in a dynamic geometry environment. LUMAT – Research and Practice in Math, Science and Technology Education.
Kuzle, A. (2013).  Patterns of metacognitive behavior during mathematics problem-solving in a dynamic geometry environment. International Electronic Journal of Mathematics Education. 8(1), 20–40.
Kuzle, A. (2011).  Preservice teachers’ patterns of metacognitive behavior during mathematics problem solving in a dynamic geometry environment.
Kuzle, A., Pavlekovic M., Kolar-Begovic Z.., & Kolar-Super R.. (2013).  The interrelations of the cognitive, and metacognitive factors with the affective factors during problem solving. Mathematics teaching for the future . 250–260.
Kuzle, A., & Dohrmann C. (2014).  Unpacking Children's Angle "Grundvorstellungen”: The Case of Distance “Grundvorstellung” of 1° Angle. (Liljedahl, P., & Sinclare N., Ed.).PME 38. PDF icon RR_Kuzle-Dohrmann-submitted.pdf (683.57 KB)
Kuzle, A. (2012).  Preservice teachers’ patterns of metacognitive behavior during mathematics problem solving in a dynamic geometry environment. (Ludwig, M., & Kleine M., Ed.).46. Jahrestagung der Gesellschaft für Didaktik der Mathematik. 2, 513–516.
Kuzle, A. (Submitted).  Problem solving as an instructional method: The case of strategy-open problem “The treasure island problem”. LUMAT – Research and Practice in Math, Science and Technology Education.
L
Ladel, S., & Kortenkamp U. (2011).  Implementation of a multi-touch-environment supporting finger symbol sets. Proceedings of CERME 7, Rzeszow. PDF icon LadelKortenkamp-IMSFSS-2011b.pdf (274.33 KB)
Ladel, S., & Kortenkamp U. (2011).  An activity-theoretic approach to multi-touch tools in early maths learning. Proceedings of ATATEMLO 2011 in Paris. PDF icon LadelKortenkamp-AAMTEML-2011a.pdf (762.62 KB)
Ladel, S., & Kortenkamp U. (2009).  Realisations of MERS (Multiple Extern Representations) and MELRS (Multiple Equivalent Linked Representations) in Elementary Mathematics Software. (Durand-Guerrier, V., Soury-Lavergne S., & Arzarello F., Ed.).Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education. January 28th - February 1st 2009, Lyon (France). PDF icon LadelKortenkamp-RMMERMMELREMS-2009a.pdf (355.73 KB)
Ladel, S., & Kortenkamp U. (2013).  Designing a technology based learning environment for place value using artifact-centric activity theory. (Lindmeier, A. M., & Heinze A., Ed.).Proceedings of the 37th conference of the International Group for the Psychology of Mathematics Education. Mathematics learning across the life span. 1, 188-192.PDF icon LadelKortenkamp-DTBLE-RF4pme37-2013.pdf (81.92 KB)
Ladel, S., & Kortenkamp U. (2012).  Early maths with multi-touch – an activity-theoretic approach. Proceedings of POEM 2012. PDF icon LadelKortenkamp-EMWMAA-2012a.pdf (1.91 MB)
Ladel, S., & Kortenkamp U. (Submitted).  Number concepts –- processes of internalization and externalization by the use of multi-touch technology Silke Ladel and Ulrich Kortenkamp. Early Mathematics Learning.

Seiten

Go to top