Export 160 results:
[ Autor(Desc)] Titel Typ Jahr
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Kortenkamp, U. (2007).  Punkt- und Achsenspiegelungen mit DGS. (Beckmann, A., Ed.).Lernen mit Dynamischen Geometriesystemen. 3, 5-28.
Kortenkamp, U. (2009).  Lernbausteine Zahlenmauern.
Kortenkamp, U. (2002).  Kegelschnitte und Projektive Geometrie. mathematik lehren. 112, 16–20.
Kortenkamp, U. (2007).  Combining CAS and DGS – Towards Algorithmic Thinking. (Li, S., Wang D., & Zhang J-Z., Ed.).Symbolic Computation and Education. 150-173.
Kortenkamp, U. (2004).  Experimental mathematics and proofs – what is secure mathematical knowledge?. Zentralblatt für Didaktik der Mathematik. 36, 61–66.PDF icon Kortenkamp-EMPWSMK-2004a.pdf (228.83 KB)
Kortenkamp, U. H., & Richter-Gebert J. (1999).  Dynamic Geometry II: Applications. Abstracts 15th European Workshop Comput. Geom.. 109–111.
Kortenkamp, U., & Blessing A. M. (2011).  VideoClipQuests as an E-Learning Pattern. (Kohls, C., & Wedekind J., Ed.).Investigations on E-Learning Patterns: Context Factors, Problems, and Solutions. 237-248.
Kortenkamp, U., & Richter-Gebert J. (2004).  Using Automatic Theorem Proving to Improve the Usability of Geometry Software. (Libbrecht, P., Ed.).Proceedings of MathUI 2004. PDF icon KortenkampRichter-Ge-UATPIUGS-2004a.pdf (842.28 KB)
Kortenkamp, U., & Müller W. (2008).  Wo ist denn hier das Undo?. Online Tutoring Journal. 3, PDF icon KortenkampMüller-WIDHDU-2008a.pdf (317.17 KB)
Kuzle, A. (Submitted).  Nature of metacognition in a dynamic geometry environment. LUMAT – Research and Practice in Math, Science and Technology Education.
Kuzle, A. (2013).  Patterns of metacognitive behavior during mathematics problem-solving in a dynamic geometry environment. International Electronic Journal of Mathematics Education. 8(1), 20–40.
Kuzle, A. (2011).  Preservice teachers’ patterns of metacognitive behavior during mathematics problem solving in a dynamic geometry environment.
Kuzle, A., Pavlekovic M., Kolar-Begovic Z.., & Kolar-Super R.. (2013).  The interrelations of the cognitive, and metacognitive factors with the affective factors during problem solving. Mathematics teaching for the future . 250–260.
Kuzle, A., & Dohrmann C. (2014).  Unpacking Children's Angle "Grundvorstellungen”: The Case of Distance “Grundvorstellung” of 1° Angle. (Liljedahl, P., & Sinclare N., Ed.).PME 38. PDF icon RR_Kuzle-Dohrmann-submitted.pdf (683.57 KB)
Kuzle, A. (2012).  Preservice teachers’ patterns of metacognitive behavior during mathematics problem solving in a dynamic geometry environment. (Ludwig, M., & Kleine M., Ed.).46. Jahrestagung der Gesellschaft für Didaktik der Mathematik. 2, 513–516.
Kuzle, A. (Submitted).  Problem solving as an instructional method: The case of strategy-open problem “The treasure island problem”. LUMAT – Research and Practice in Math, Science and Technology Education.
Kuzle, A., & Artigue M. (2012).  Characterization of preservice teachers’ patterns of metacognitive behavior and the use of Geometer’s Sketchpad. The didactics of mathematics: Approaches and issues. A Hommage to Michèle Artigue.
Kuzle, A. (Submitted).  Unpacking the nature of problem solving processes in a dynamic geometry environment: Different technological effects. Journal für Mathematik-Didaktik.
Kuzle, A. (2012).  Investigating and communicating technology mathematics problem solving experience of two preservice teachers. Acta Didactica Napocensia. 5(1), 1–10.
Ladel, S., & Kortenkamp U. (2009).  Realisations of MERS (Multiple Extern Representations) and MELRS (Multiple Equivalent Linked Representations) in Elementary Mathematics Software. (Durand-Guerrier, V., Soury-Lavergne S., & Arzarello F., Ed.).Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education. January 28th - February 1st 2009, Lyon (France). PDF icon LadelKortenkamp-RMMERMMELREMS-2009a.pdf (355.73 KB)
Ladel, S., & Kortenkamp U. (2013).  Designing a technology based learning environment for place value using artifact-centric activity theory. (Lindmeier, A. M., & Heinze A., Ed.).Proceedings of the 37th conference of the International Group for the Psychology of Mathematics Education. Mathematics learning across the life span. 1, 188-192.PDF icon LadelKortenkamp-DTBLE-RF4pme37-2013.pdf (81.92 KB)
Ladel, S., & Kortenkamp U. (2012).  Early maths with multi-touch – an activity-theoretic approach. Proceedings of POEM 2012. PDF icon LadelKortenkamp-EMWMAA-2012a.pdf (1.91 MB)
Ladel, S., & Kortenkamp U. (Submitted).  Number concepts –- processes of internalization and externalization by the use of multi-touch technology Silke Ladel and Ulrich Kortenkamp. Early Mathematics Learning.
Ladel, S., & Kortenkamp U. (2011).  Finger-Symbol-Sets and Multi-Touch for a better understanding of numbers and operations. Proceedings of CERME 7, Rzeszow. PDF icon LadelKortenkamp-FMBUNO-2011a.pdf (598.13 KB)
Ladel, S., & Kortenkamp U. (2009).  Virtuell-enaktives Arbeiten mit der „Kraft der Fünf''. MNUprimar. PDF icon LadelKortenkamp-VAGKF-2009a.pdf (722.46 KB)


Go to top