Publications

Export 10 results:
[ Autor(Desc)] Titel Typ Jahr
Filters: First Letter Of Last Name is K and Autor is Ana Kuzle  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
K
Kuzle, A. (2012).  Investigating and communicating technology mathematics problem solving experience of two preservice teachers. Acta Didactica Napocensia. 5(1), 1–10.
Kuzle, A. (Submitted).  Nature of metacognition in a dynamic geometry environment. LUMAT – Research and Practice in Math, Science and Technology Education.
Kuzle, A. (2013).  Patterns of metacognitive behavior during mathematics problem-solving in a dynamic geometry environment. International Electronic Journal of Mathematics Education. 8(1), 20–40.
Kuzle, A. (2011).  Preservice teachers’ patterns of metacognitive behavior during mathematics problem solving in a dynamic geometry environment.
Kuzle, A., Pavlekovic M., Kolar-Begovic Z.., & Kolar-Super R.. (2013).  The interrelations of the cognitive, and metacognitive factors with the affective factors during problem solving. Mathematics teaching for the future . 250–260.
Kuzle, A. (2012).  Preservice teachers’ patterns of metacognitive behavior during mathematics problem solving in a dynamic geometry environment. (Ludwig, M., & Kleine M., Ed.).46. Jahrestagung der Gesellschaft für Didaktik der Mathematik. 2, 513–516.
Kuzle, A., & Dohrmann C. (2014).  Unpacking Children's Angle "Grundvorstellungen”: The Case of Distance “Grundvorstellung” of 1° Angle. (Liljedahl, P., & Sinclare N., Ed.).PME 38. PDF icon RR_Kuzle-Dohrmann-submitted.pdf (683.57 KB)
Kuzle, A. (Submitted).  Problem solving as an instructional method: The case of strategy-open problem “The treasure island problem”. LUMAT – Research and Practice in Math, Science and Technology Education.
Kuzle, A., & Artigue M. (2012).  Characterization of preservice teachers’ patterns of metacognitive behavior and the use of Geometer’s Sketchpad. The didactics of mathematics: Approaches and issues. A Hommage to Michèle Artigue.
Kuzle, A. (Submitted).  Unpacking the nature of problem solving processes in a dynamic geometry environment: Different technological effects. Journal für Mathematik-Didaktik.
Go to top