

 Learning Programming With Ruby

Wolfgang Müller, mueller@md-phw.de
University of Education Weingarten, Media Education and Visualization Group,
Leibnizstr. 3, 88250 Weingarten, Germany

Ulrich Kortenkamp, kortenkamp@cermat.org
University of Education Karlsruhe, Centre for Educational Research in Mathematics
and Technology (CERMAT), Bismarckstr. 10, 76133 Karlsruhe, Germany

 Abstract
Introducing students into the fundamentals of programming can still be considered
as a real challenge. The choice of the right programming language seems to play a
major role. In this paper we present our experiences with the programming
language Ruby in introductory programming classes. Ruby is a relatively young
programming language, which provides some very interesting aspects and seems
like a very good candidate as a beginner's programming language, integrating the
advantages of other languages with respect to learning programming, while still
being professional enough to support open-ended learning. We discuss several
aspects of Ruby that distinguish it from other languages and which make it a good
choice for a beginner's course in programming. In addition, we discuss the
approaches applied at two different universities in teaching programming with Ruby.
We present in some detail the individual programming exercises and present
student results. Finally, we discuss the pros and cons for applying Ruby as a first
programming language.

 Keywords
Computer Science Education, Programming, Object-oriented Design, Ruby, Shoes,
Rails

 INTRODUCTION
Introducing students into the fundamentals of programming can still be considered
as a real challenge. Learning to program is generally considered hard, and
programming classes often have high dropout rates. Reasons for this have been
analyzed in some detail. A major problem is that programming requires
competencies in different fields, and students do not only have to learn the syntax of
a programming language and the semantics of language commands, but also at the
same time fundamentals in algorithmic thinking and fundamental algorithms,
program design, and program comprehension. Modern object-oriented languages in
general add complexity in terms of concepts and language structures, and
discussions are ongoing whether object-oriented concepts should be taught in
introductory programming classes or not (Kortenkamp et al. 2009).

There is also an ongoing debate on the right choice of programming language for
introducing students into programming. Languages such as Logo, Modula, or Eiffel
have been designed with educational aspects in mind, but the lack of real-world
relevance resulted often in a lack of motivation for students learning these
languages. As a result, these programming languages play a minor role in
programming classes today. C++, C#, and Java are examples for languages with
wide application in the field of programming, also being applied frequently for
introductory programming classes. However, the inherent complexity of these
languages makes it difficult for novices to meet with success, and therefore there
are quite a few approaches to utilize simplified variants of these languages or

certain forms of filters to ease learning. The steep learning curve for such
programming languages and the little attraction of corresponding classes to
students have lead to the development of languages of programming environments
that integrate graphics, animation, and multimedia components and that facilitate
the development of interesting and interactive multimedia products with low effort
(see Kelleher and Pausch, 2005, for a comprehensive overview). These languages
and environments are designed to increase students motivation to learn
programming and some of them are especially designed to attract artist, children,
and women. Examples for such approaches are Processing (Raes and Fry 2007)
Alice3D (Cooper et. al. 2000), Scratch (Maloney et. al., 2005), Squeak (Guzdial
2000, Guzdial and Rose 2002) and Croquet (Smith et. al. 2003). However, these
languages in general also lack relevance in software development, and novices in
programming are required to learn an additional programming language thereafter.

Ruby is a relatively young programming language, which provides some very
interesting aspects and seems like a very good candidate integrating the
advantages of other languages with respect to learning programming. It is also a
programming language with increasing application in professional software
development, especially in the area of Web projects. Ruby has been designed to
provide an enhanced readability, providing command structures resembling more
similarity to English language. Similar to languages such as Python, Ruby is an
interpreted language, and the interactive interpreter provides simplified access to
the programming language. Moreover, Ruby also integrates aspects for functional
and object-oriented languages. The Ruby package Shoes make it very easy to
create graphical user interfaces with multimedia components, thus addressing more
complex programming exercises with higher motivational value from very early on.
Finally, using the web application framework Rails it is possible to get to the level of
complex web projects with database integration and web interfaces even in an
introductory course on programming.

In the following, we will discuss certain aspects in some more detail, which make
Ruby an interesting candidate for a programming language for beginners' classes in
programming. In addition, we discuss the approaches applied at two different
universities in teaching programming with Ruby. We present in some detail the
individual programming exercises and present student results. Finally, we discuss
the pros and cons for applying Ruby as a first programming language.

 ASPECTS OF THE RUBY PROGRAMMING LANGUAGE

Ruby is a dynamic, reflective, general-purpose object-oriented programming
language that combines syntax inspired by C and Perl with Lisp and Smalltalk-like
features. Ruby was initially developed and designed by Yukihiro Matsumoto during
the mid-1990s. Ruby supports multiple programming paradigms, including
imperative, functional, object-oriented, and reflective programming. It supports
dynamic typing and automatic memory management utilizing a garbage collector.
Similar to many other modern languages, Ruby is in interpreted language, providing
an interactive interpreter for both the execution of scripts and development and
testing.

A major design goal of Ruby was from the very beginning an enhanced readability
of the code, emphasizing the needs of a programmer and understanding a
programming language as a user interface with its requirements regarding usability.
In addition, Ruby is often attributed with the principle of least surprise (POLS),
meaning that the language tries to behave in such a way as to minimize confusion
for experienced users. Last not least, Ruby was from the very beginning intended to

be programming language for programming education, teaching students that
programming is fun (Matsumoto 2000).

An example for the integration of functional elements into Ruby and also the
enhanced readability of its expressions is depicted in figure 1. In fact, the iterator
expression in figure 1a closely corresponds to its expression in English language.

Fig. 1: a) Iterator over a list with a parameterized code block,

b) Inject iterator for accumulating list elements with a specified operator
(Thomas 2009)

Code Blocks In fact, many of the concepts presented above already base on the
concept of code blocks, which are the most visually distinctive aspect of Ruby Code
(see Carlson and Richardson, 2006, for a detailed discussion). Code blocks are
related to the concept of closures in other languages. They can be considered
objects that contain some Ruby code, and the context necessary to execute it.
Essentially, a Ruby code block is a method that has no name, represented in terms
of an object. Ruby code blocks are related to closures in functional programming,
and represent another example how functional concepts have been mixed with
procedural and object-oriented concepts in Ruby. In fact, Ruby programs can hardly
be written without code blocks.

Most other languages have something like a Ruby code block: Lisp's and Python's
lambdas, C’s function pointers, C++’s function objects, Perl’s anonymous functions,
Java’s anonymous inner classes. In general, these language elements are usually
considered as advanced concepts. In fact, Java first excluded closures deliberately
in the first design to keep the language simple. It was only introduced later, but in a
more restricted way based on anonymous classes. Concepts related to closures are
usually not covered in introductory programming classes, and, instead, postponed
and passed around. However, this often leads to confusion for novices in
programming, since solutions to problems cannot be expressed simply and
elegantly, and such solutions no longer resemble equivalence to typical design
patterns to be found in textbooks, documentations, and forums. Furthermore, for
specific problem areas such as user interface development, computer
communication, and parallel computing, the corresponding API typically requires the
utilization of closure-like structures. As a consequence, touching problems and
examples in such areas usually require the introduction of this so far not covered
aspect.

Unlike most other languages, Ruby makes code blocks easy to create and imposes
few restrictions on them. Their primary purpose was the abstraction of loop
constructs in Ruby. However, now they represent a central element of the Ruby
language, and many language constructs in Ruby accept code blocks as
parameters. In their simplest form they are defined as a block, with block delimiters
either being curly braces or a do ... end construct, where the first version is
preferred for simple code blocks in a single line, while more complex ones have to

[1,2,3].each {|i| puts i * i}
 # 1
 # 2
 # 3

[1,3,5,7].inject(:+) # => 16
[1,3,5,7].inject(:*) # => 105

be defined in the latter form. Code blocks may also accept parameters given in
“pipes”, similar the lambda construct in Lisp. Figure 1a depicts an example for such
a code block.

Like many other interpreted languages, Ruby does not enforce strict typing, but
checks the type of objects at runtime. Even further, it is not necessary to assign
types to variables or parameters, but a concept called “Duck Typing” is used.
Actually, in object oriented programming the type of a variable corresponds to a
class or interface. In Ruby, objects also belong to a certain class, but in order to be
used as a given type it is not necessary for the object to belong to a class or
implement an interface, but it is sufficient to implement the methods that will be
used. In other words: If an object “behaves” like objects in a certain class, then we
can use it as such in generic code that is written for objects in that class.

While it may feel uncomfortable for programmers that it is not mandatory to write
code that includes explicit checks typing, it is very convenient for beginners who
have enough other concepts that they have to learn. Learning the concept of a
“type” or “class” can be postponed until it is indeed necessary. We will discuss this
later when we explain the “classes on demand” paradigm.

 RUBY FRAMEWORKS

Testing So-called “agile” approaches (Cockburn 2007) currently represent a major
trend in software development, and one central element of these is the application
of a test-driven development paradigm. Following this paradigm, software
development starts with the definition of unit tests, which are supposed to verify and
validate the source code to be developed thereafter. Corresponding test cases are
designed and implemented for the smallest testable parts of the application. Test
frameworks simplify the implementation of such test cases and their automated
execution.

A number of test frameworks are available for Ruby. As of version 1.9 the MiniTest
framework replaces the Test::Unit framework as the standard testing framework in
Ruby.

Shoes is a cross-platform approach to provide a simple and easy way to understand
User Interface framework in Ruby (why 2009). Shoes is primarily intended for
applications in education, targeting to ease UI development in Ruby for beginners
and novices in programming. It is connected to the Hackety Hack environment, a
free Ruby-based environment aiming to make programming easily available for
beginners (why 2003). While Shoes is based on the standard Ruby interpreter and
libraries, it is typically distributed also as an own, closed framework, supplementing
the runtime system with a GUI and a documentation browser.

Shoes provides elements from standard UI toolkits in a simplified form. As such,
Shoes also relies on the standard concept of stackable widgets with content.
However, in Shoes layout mechanisms are directly bound to specific widget types,
stacks and flows, thus, simplifying the definition of layouts. At the same time, Shoes
utilizes Web concepts for the definition of content element level. The instantiation of
elements such as paragraphs, borders, and images very much resembles the
definition of the corresponding elements in HTML. As such, students with a basic
understanding of web technologies and HTML can easily grasp the concepts of the

GUI API and are instantly able to design and implement simple user interfaces.
Moreover, Shoes brings URLs and links to the GUI and makes it easy to implemtn
actions. Again, code blocks represent the central language element to define these.
Code blocks are being applied ubiquitously in Ruby programs, and learners will work
with them in programming from the first moment on. As a consequence, students do
not have to learn a new language construct when working with Shoes for the first
time, like they often have to in other languages.

Shoes also supports the creation of graphics with primitives such as lines, ovals, or
paths, and provides operations for transformation, such as scaling or rotation. In
addition, means to define animations in an easy way are provided. Based on these
functionalities, it is easy to develop interactive multimedia applications with Shoes,
such as visualizations or small computer games.

Ruby on Rails or “Rails” for short (http://rubyonrails.org/) is an open-source
framework for creating web-based applications following a model-view-controller
approach. It is particularly easy to write robust applications. It uses a concept of
“convention over configuration”, that is best explained using an example: Usually,
web applications use some kind of database (e.g., MySQL) that is used to store
data in tables. These tables correspond to models that are usually represented by
classes. In most languages this means that it is necessary to either use special tools
to model this relationship between the database models and the classes, or to write
the corresponding code twice with small variations. Rails circumvents this repetitive
and error prone task by using conventions – every model (a subclass of a special
API class) automatically corresponds to a table in database that is identified by the
name of the class. The columns of this table in turn correspond to member variables
of the class. The accessors for these members are created automatically using the
metaprogramming facilities of Ruby (see Perrotta 2010 for this and more
metaprogramming examples in Ruby).

 USING RUBY IN INTRODUCTORY PROGRAMMING CLASSES

Ruby has been applied as the programming language in a 6 ECTS introductory
class in programming over one semester for students in the bachelor program on
Media Education and Management at the University of Education in Weingarten in
2008 and 2009. In this study program, aspects of media design and production do
represent a percentage of about 30%, only. Students in this program are expected
to get a fundamental understanding in the principles of programming in this class.
Typical class sizes were around 35 students, around 90% of them female. The vast
majority of students does not have any experience in the field of programming at all.

Ruby was applied to ease the comprehension of fundamental programming
concepts, while utilizing a “real” programming language with possible relevance to
later work-life projects at the same time. Before, Java was being applied in similar
as the introductory programming language. However, the inherent initial complexity
of Java programs due to the strict application of OO concepts from the very
beginning proved to be difficult for students. As a result, interesting levels of
programmings, such as developing graphical-interactive applications, could hardly
be reached.

Classes started with a general introduction into the Ruby's interactive shell irb,
fundamental language elements, imperative programming concepts, functions and
procedures, advanced language concepts were discussed. These included unit
testing, I/O, exceptions, code-blocks, fundamental object-oriented concepts in Ruby,
and GUI programming with Shoes. Object-oriented concepts were covered to the

level of classes, interfaces and duck typing, and inheritance, only. More advanced
concepts, such as design patterns, were omitted. In addition, students were
introduced to data structures and fundamental algorithms, such as sorting. During
this class, focus was put on performing projects in project teams, applying selected
agile software development techniques. Examples for such projects includes the
development of a simple graphical interface, a graphical calculator or a color editor,
and a simple computer game. In the context of this last project, student developed
independently in small teams small interactive games such as Tic-Tac-Toe, 4 in a
Row, or Memory. Individual students developed further sophisticated applications,
such as online shops with payment system and a simple HTML editor. During this
development, they applied the test-driven development paradigm. Figure 2 depicts
examples from these developments.

Fig. 2: Example student projects based on Shoes.
Left: Four in a Row; right: Color Editor

At the University of Education Schwäbisch Gmünd1 Ruby was integrated into the
curriculum over the course of three semesters. All students had introductory courses
in HTML in their first year. After that, the first true computer science course (2
ECTS) focuses on elementary algorithms (like sorting and searching), the second
one, introduction to object-oriented programming (2 ECTS), uses Shoes, and the
third course (6 ECTS) uses the Rails framework to create a web-based application.
Typical course size is only 10-20 students. As these three courses are the only true
computer science courses for them, it is challenging to bring them to a level high
enough for teaching computer science in schools. However, in the last course which
is organized in project form, they usually succeed to create a working non-trivial web
application, for example a web-based ride sharing system that can be used by all
students.

1 Ulrich Kortenkamp moved from the University of Education Schwäbisch Gmünd to
the University of Education Karlsruhe recently. The curriculum structure in Karlsruhe is
currently being adapted to the one described here.

Fig. 3: Example student project based on Rails. A ride-sharing web-application that

was used later by students of the whole university

 DISCUSSION

The above presentation of language concepts depicts that Ruby provides a number
of interesting features for teaching and learning programming. However, a simple
exchange of programming languages alone without any modifications of teaching
concepts clearly can hardly provide a very new access to programming. Yet, with
the introduction of Ruby in beginner's classes in programming we also introduced a
number of additional approaches connected to modern software development and
targeted to ease learning programming. Clearly, most of these new approaches are
not clearly bound to the programming language Ruby. Still, Ruby much simplified
the introduction of these innovative concepts into the classroom.

In our classes, we urge students to apply agile software development approaches,
such as test-driven development and pair programming. Agile techniques represent
currently the state-of-the-art in software development, and the application of them in
the classroom provides a high potential for making learning of programming skills
more effective. Agile techniques not only introduce guidelines on how to solve
problems in programming on an organizational level, some of them are also directly
targeted to information exchange and learning in the context of software
development.
From an educational point of view, test-driven software development provides a
number of advantages. Taking tests as the starting point of the development of a
solution forces students to analyze the problem in substantial detail, to describe the
expected behaviour of classes and methods, and to classify and document
problematic and exceptional use cases. Once developed, it also supports students
in debugging own code by providing on the one hand a guideline on how to proceed
in testing the software, on the other hand it helped students to avoid introducing new
errors in the course of the development. Here, the possibility to use Ruby with the
interactive interpreter and to utilize a state-of-the-art test framework provided in the
standard library provided the flexibility to introduce test-driven development patterns

with simple means and to scale up to using the test framework at a later phase in
the middle of the class.

The introduction into test-driven development was done using micro-tests as in the
following example. Students were asked to write a function that calculates the
maximum of numbers in a given array. They started with an empty definition of the
function max: def max(l) end. Before they wrote the rest of the code –of course,
they were not allowed to use the built-ins for this functionality– they should formulate
some simple Boolean expressions that can verify the correctness of their code for
some special cases, for example print max([5,3,6,3,7,2])==7. This line of
code will print “false” if executed. Next, they had to fill in the implementation of the
max function. If they did it correctly, all their tests should evaluate to “true”, providing
a means for self-evaluation of their exercises. As an extension of this concept,
students could also work collaboratively on tests, sharing them with the class. Not
only the tests gave them confidence in their own abilities, but they also served as a
discussion stimulating element. Clearly, the test-driven approach in our classes
proved not only applicable, but it supported students in particular in the project
phases.

Another technique we applied in classes was the “I-am-an-algorithm” scenario.
Instead of analyzing algorithms from the outside, students took over the role of the
computer and went through the algorithms in a role-playing game. Again, we
illustrate this with an example: The inject-method for arrays that takes a block as
argument is far from being trivial to understand for beginners. Here, we asked three
students to take over the role of the (1) the array, (2) the inject control structure, and
(3) the code block. Now the inject-student asked the array-student for each of its
elements, passing them via the pipe to the block-student, who works with this
element and passes it back to the inject-student, who is responsible to ask for the
next element, etc., etc. This didactical technique proved to be very effective.
Students experience the shared responsibilities of the different code elements and
become used to the abstraction patterns used in programming. It is particularly
effective with the code blocks and pipes in Ruby.

A third example shall illustrate the advantage of Ruby with respect to the “lazy
introduction” of classes of objects, or classes on demand. Since all data types in
Ruby are objects internally, and since Ruby supports open definition of classes, i.e.
the extension of class definitions at any time, it is possible to ignore the concept of
classes until it is necessary or helpful to introduce it. In beginners’ courses on
object-orientation it is usually a problem that there is no real need for this higher
abstraction (Kortenkamp et. al 2009). The artificial introduction of this concept is
neither motivating nor justifiable. In Ruby, it is possible to introduce classes when it
comes with a real benefit. The example given in (Kortenkamp et. al 2009) illustrates
this with the introduction of a coding length method for numbers, strings and arrays.
By “opening” the Fixnum class it is possible to add a method for the codelength (we
use a compact notation for the definitions here to save space):
class Fixnum; def cl;(Math.log(abs)/Math.log(2)).floor+1 end; end

The same is true for String:
class String; def cl; 8*length end; end

This method cl can then –thanks to duck-typing– be used in generic code for arrays:
class Array; def cl; inject {|s, e| s += e.cl }; end; end

Using these three definitions, it is possible to find the coding length of an array of
integers and Strings using the cl method. The same code using classic procedural

concepts would be much more evolved and harder to understand. The students are
able to appreciate this approach and are open to object-orientation for their further
projects.

Not all aspects of Ruby proved to be completely unproblematic, though. Being a
relatively young programming language, especially the Ruby language
documentation as well as the error messages shown turned out to be unsatisfactory
for learners in programming. Compared to languages such as Java, documentation
of the standard API documentation proved to be rather brief, and provided often only
limited examples. Also, students considered it often very difficult to find relevant
descriptions in the API documentation due to Ruby's highly granular module
structure and the corresponding fragmentation. On the other hand, there exists a
large amount of freely available learning material, books and even comics on web,
representing a valuable source for learners of this language.

Moreover, the Shoes framework in its current version can be considered a beta
version only. The GUI functionality provided by the Shoes API is quite limited, and
suited to develop simple graphical, interactive applications, only. Some bugs in the
Unfortunately, the further development of Shoes appears unclear, since the
anonymous main developer, only known under his pseudonym “why the lucky stiff”,
disappeared and completely shut down his web presence on August 19, 2009.

 CONCLUSION

Out first results from the application of Ruby as first programming language can be
considered very promising. Not only does it support all programming paradigms we
need for our students, but it also enables us to introduce them deliberately and
flexibly.

Ruby proved to be easy to install and use, so there is not much overhead for the
set-up of a learning environment. Even in the most basic installation the built-in
interactive ruby interpreter irb can be used, if there is a need for more then it is
possible to use an IDE like Netbeans, which comes with both JRuby and standard
Ruby. Moreover, it is possible to migrate seamlessly into more complex project
scenarios, as Ruby is robust, efficient and advanced enough to be used for
commercial-grade programming.

The three didactical approaches of micro-testing, algorithm-role-playing and classes
on demand are very well supported by Ruby and proved to be effective in our
classes. A formal evaluation of upcoming Ruby classes based on self-efficacy
(Bandura 1997) is currently in preparation. Micro-Testing fits very well into the
general test-driven standard of Ruby-based development. Algorithm-role-playing
highlights the importance of blocks, closures in functional programming and
responsibilities of objects in object-oriented design. Classes on demand are only
possible due to the open class definitions in Ruby and the general object-nature of
all types in this language.

The lack of introductory textbooks for Ruby in German language was a bit
problematic. However, we expect that the range of available books will increase in
the near future due to the high suitability of Ruby for introductory programming
courses.

REFERENCES

Bandura, A. (1997) Self-efficacy. The exercise of control. New York. Freeman.

Carlson, Lucas and Richardson, L. (2006) Ruby Cookbook. O'Reilly Media. 2006.

Cockburn, Alistair (2007) Agile Software Development: The Cooperative Game. 2nd

Edition. Pearson Education Inc.

Cooper, S., Dann, W. and Pausch, R. (2000). Alice: a 3-D tool for introductory

programming concepts, Proceedings of the fifth annual CCSC northeastern
conference on The journal of computing in small colleges. Ramapo College of
New Jersey, Mahwah, New Jersey, United States.

Guzdial, Mark (2000) Squeak: Object-Oriented Design with Multimedia

Applications. Prentice Hall.

Guzdial, Mark and Kim Rose, Kim (Eds.) (2002) Squeak: Open Personal Computing

and Multimedia. Prentice Hall.

Kelleher, Caitlin and Pausch, R. (2005) Lowering the Barriers to Programming: A

Taxonomy of Programming Environments and Languages for Novice
Programmers, ACM Computing Surveys, 37(2), 83–137.

Kortenkamp, U., Modrow, E., Oldenburg, R., Poloczek, J. and Rabel, M. (2009)

Objektorientierte Modellierung – aber wann und wie?, LOG IN Heft Nr. 160/161,
22–28.

Matsumoto, Yukihiro (2000) The Ruby Programming Language.

http://www.informit.com/articles/article.aspx?p=18225 (last checked 30.3.2010).

Maloney, J., L. Burd, et al. (2005) Scratch: A Sneak Preview. International

Conference on Creating, Connecting, and Collaborating through Computing.,
Kyoto, Japan.

Perrotta, P. (2010) Metaprogramming Ruby. Pragmatic Programmers

Reas, C. and Fry, B. (2007) Processing: A Programming Handbook for Visual

Designers and Artists. MIT Press.

Smith, D.A., Kay, A., Raab, A. & Reed, D. (2003) Croquet – a collaboration system

architecture. First Conference on Creating, Connecting and Collaborating
through Computing: 2.

Thomas, D. (2009). Programming Ruby - The Programmatic Programmer's Guide.

Pragmatic Programmers.

 why the lucky stiff (2003) The Little Coder's Predicament. Online:

http://viewsourcecode.org/why/hacking/theLittleCodersPredicament.html (last
visited: 22.03.2010).

why the lucky stiff (2009). Shoes. Online: http://shoes.heroku.com/ (last visited:

30.03.2010)

 BIOGRAPHY

Wolfgang Müller holds a doctorate in Computer Science and is a
professor for Media Education and Visualization with the
University of Education in Weingarten. He is a German delegate
to IFIP TC 3, WG 3.3 „Research on Educational Applications of
IT“. In addition, he is a co-editor in chief of both the Springer
Journal Transactions on Edutainment and the Journal “Notes on
Educational Informatics” (NEI).

Ulrich Kortenkamp received its PhD from the Swiss Federal
Institute of Technology Zurich in theoretical computer science. In
2006 he became a Professor for Computer Science and Media
Education at the University of Education Schwäbisch Gmünd.
Currently he holds a position as Professor for Mathematics and
Education in Karlsruhe and director of the Centre for Educational
Research in Mathematics and Education, CERMAT.

 Copyright

This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivative Works 3.0 unported License. To view a copy of this licence, visit
http://creativecommons.org/licenses/by-nc-nd/3.0/.

