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Abstract

Computational Geometry very often focuses on static problems, like computing the
convex hull or Voronoi complex of a given set of points. Fundamentally new questions
arise when the objects under consideration are no longer static, but may move around
with respect to certain constraints. This scenario is not unusual, for instance every
mechanism can be considered as a dynamic geometric entity.

We here focus on the new areas of problems that arise from genuinely dynamic
effects. Constructions from elementary geometry play a crucial role in this context,
since they form first natural instances of non-trivial examples where it is reasonable
to study the dynamic behavior. One of the most fundamental problems arises when
one considers one point of an intersection of a line and a circle and allows the line to
move around. Since the point of intersection is not unique, a computer program has to
decide for every ”discrete snapshot” which of the two intersection points is meant. If
this decision is not made correctly a “path-jumping” of the point may occur. A careful
analysis of the situation shows that for a satisfactory resolution of the problem one has
to embed the configuration in an ambient complex projective space. One even has to
take monodromy effects and underlying Riemann surfaces into account.

We will develop a theory for the study of these phenomena. After this, we will
investigate the algorithmic complexity of ”making the right decisions”. It will turn out
that even in very weak versions this problem is NP-hard. In some stronger versions it
is PSPACE hard or even undecidable.

Introduction

Imagine any construction of elementary geometry (say a ruler and compass construction of
the midpoint of two points A and B). It consists of certain free elements (the points A and
B) and certain dependent elements whose position is determined by the position of the free
elements. Each specific picture of such a construction is a snapshot taken out off the whole
continuum of all possible drawings for all possible locations of the free elements. If we move
the free elements we can walk continuously from one instance of the construction to another
one. During such a walk a continuous motion of the free elements should be reflected by in
a continuous movement of the dependent elements.

This article deals with those effects and problems that genuinely arise from such a
dynamic setup of geometry. The research that led to the results presented in this paper
was motivated by the desire (and the actual work) of implementing a concrete software
package for doing dynamic geometry on a computer [11, 12]. With such a program one



should be able to do constructions of elementary geometry with a few mouse clicks. After
a construction is made one should be able to pick the free elements with the mouse, drag
them around, while the whole construction follows accordingly.

Geometric locus under the mo-
tion of a “three bar linkage”.
The use of complex path trac-
ing generates reliably complete
real branches of algebraic curves.
The orientation heuristics that
are usually used by other soft-
ware can only generate partial
loci.

The innocent looking requirement of continuity of dependent elements turned out to
be fundamentally hard to fulfill. In fact one has to rely on notions of complex function
theory and Riemann surfaces to get a mathematically sound treatment of these effects
[6, 13]. Here we report on these problems from a conceptual point of view and from a
complexity theoretic point of view. We explain how a complexified setup can be used to
obtain continuity. However we will also explain that actually computing the correct picture
that results from a movement can be algorithmically hard. The complexity classes in most
algorithmic questions related to that context range from NP-hard problems via PSPACE-
hard problems up to even undecidable problems. In particular one can prove that ...

. it is in general PSPACE-hard to decide whether two instances of the same construction
can be continuously deformed into each other by moving the base elements along a
real path.

. it is NP-hard to calculate the position of the dependent elements after a specific move
of a free element.

. it is undecidable whether two instances of a construction involving “wheels” can be
continuously deformed into each other by moving the base elements.

Detailed proves of these results can be found in [13].

Although the results of this article arose from the study of configuration spaces of ele-
mentary geometric constructions they are naturally related to many other setups in the area
of geometry. Among those are the study of configuration spaces of mechanical linkages [2, 5],
realization spaces of oriented matroids [8, 1, 9, 15] and polytopes [10], and the piano movers
problem (with possibly many pianos) [4, 14]. Our complexity results are partially general-
izations and strengthenings of known complexity results in these areas. Besides the narrow



context of dynamic geometry our results are relevant for all areas where geometric objects
are moved around under certain geometric constraints, like robotics, parametric CAD [3],
virtual reality, or computational kinematics. Our results imply that many problems of these
areas are computationally difficult (like the persistent naming problem of parametric CAD
[3] or the navigation problem of computational kinematics.)

1 Geometric straight line programs

We restrict ourselves to the following particularly simple scenario, which arises in the context
of interactive geometry software: a dynamic setup for elementary geometry. Nonetheless,
we want to emphasize the the underlying methods apply also to much more general contexts.

Large parts of elementary geometry are based on the theory of ruler and compass con-
structions. Such constructions are usually done by first drawing a set of “free points” in the
plane and then proceeding by adding new objects with operations like: “join of two points”,
“intersection”, “circle given by midpoint and perimeter point”. We formalize constructions
that use these operations by the concept of geometric straight line programs.

We assume that the objects are given by suitable parameters (coordinates). A geometric
straight line program (GSLP) is a sequence of program statements, where each statement
describes the position of a new elementary object. The operations we allow are:

P=FreePoint (x,y) Point P is at position (x,y)

L=Join(P1,P2) Line L is the join of points P1 and P2
C=Circle(M,P) Circle P is the a circle with center M through P
P=Meet (L1,L2) Point P is the meet of lines L1 and L2
P=IntersectionCL(C,L) Point P is the intersection of line L and circle C

P=IntersectionCC(C1,C2) Point P is the intersection of the circles C1 and C2

The first four of these operations produce a unique element. The last two operations
have an intrinsic ambiguity: A line and a circle, or two circles, can have more than one
intersection. It can even happen that a line and a circle do not intersect at all. So, in general
a GSLP does not describe a unique geometric situation. One can even get stuck during
the execution of a GSLP if an intersection does not exist. However, for a given geometric
configuration of points, lines and circles it is easy to check whether it is compatible the
definition of a given GSLP. Such a configuration is then called an instance of the GSLP. It
is clear that for every GSLP (with concrete values for the coordinates of the free points)
there are at most finitely many possible compatible instances, since this number is bounded
by 2™ where n is the number of ambiguous choices.

Example: The following GSLP encodes a construction of the midpoint of two points
A=(1,1) and B = (5,3).



A=FreePoint(1,1);
B=FreePoint(5,3); E b <
C=Circle(A,B); -
D=Circle(B,A); [ 2 1
E=IntersectionCC(C,D); | P |
F=IntersectionCC(C,D); [ 2 |
G=Join(A,B); \ )
H=Join(E,F);
I=Meet (G,H); r 10

[ H

O 00 ~NO O WN =

In this GSLP points F and F have the same definition as being the intersection of the
two circles. Only for the “right” choices you will obtain an actual instance of the GSLP in
which the final point is indeed the midpoint of A and B.

2 The problem of continuity

We now study a GSLP in a dynamic setup. For this consider the coordinates of the free
points parametrized by A € [0,1]. We are interested in a reasonable behavior of the depen-
dent elements of the construction. Or more intuitively: assume you constructed the above
picture with an interactive geometry program, how should the dependent elements behave,
when you move A or B?

It is clear that the only freedom for the choice of dependent elements comes from the
ambiguities of circle intersections. A desirable behavior would be the following:

“While the free points move continuously all dependent objects move continu-
ously as well.” In other words: “The coordinates of all elements are continuous
functions in A.”

At first sight it is not clear whether this requirement is satisfiable at all (compare [7]).
In fact, all geometry systems and programs for parametric CAD that are currently available
suffer from non-continuous behavior of dependent elements; while you move a free point it
may happen that parts of the construction jump from one place to another. In particular,
we must find a way to deal with the problem of vanishing intersections.

3 Complex projective geometry

To fulfill the continuity requirements we first need to fix a topology. For this consider the
Euclidean plane as a subset of the projective plane. This gives us “points at infinity” and
the desired topology is induced by the topology of the manifold structure that underlies
the projective plane. In particular point can move to infinity and can “continuously” come
back from the opposite side of the (embedded euclidean) plane.



The next and more important enlargement of the setup comes from embedding the whole
situation in complex space. For this we just assume that the coordinates of our objects may
be also given by complex numbers and study complezx two-dimensional projective geometry.
Since every complex number can be described by two real numbers this space has real
dimension four. Nevertheless, the Euclidean plane can still be found as a substructure of
this space.

Compared to the real setup complex calculations have a great advantage: Intersections
never (!) vanish. Even if a line and a circle do not intersect in the real Euclidean plane, it
is still reasonable to speak about intersection points with complex coordinates, since their
coordinates are just solutions of suitable quadratic equations.

4 Moving in complex spaces

Assuming that the free points perform a continuous motion there is an easy strategy of
dealing with multiple intersections: Consider both intersections as individual objects and
trace their paths through complex space. As long as the intersection points do not coincide
one can easily tell them apart and (in a continuous model of computation) trace them as
individual objects.

In the Euclidean plane there can
be one, two or none intersections
of a line and a circle. In complex
space these intersections never
vanish. If we can avoid “singu-
lar situations” it is always possi-
ble to trace the two intersections
individually.

But how can we avoid the situations where the intersection points coincide? There we
again take advantage from the complex setup. Let us call an instance of a GSLP non-
singular if no “double intersections” occur. If we now move from one non-singular instance
of a GSLP to another non-singular instance of the GSLP there is always a path through
complex space that avoids all singular situations. This is a consequence of the fact that a
non-constant analytic function can have no accumulation points as its set of roots. This
means that we can always take a “complex detour” that allows us to individually trace all
dependent objects of a construction. For such paths we obtain perfect continuity. In fact
for an analytic path that avoids all singularities the coordinates of the dependent objects
are analytic functions in the input parameter.



5 Real benefits

The approach above may sound far too complicated to resolve the original problem of
Euclidean geometry. However, it can be proved that as soon as we want to have continuous
behavior of the dependent elements, there is only one way to make the decisions and that
this choice coincides with our solution. Although the setup uses complex numbers we have
several benefits in the real case. Here is a list of keywords of what becomes possible under
this setup:

e All derived elements behave analytically.

e The solution is unique.

e The behavior is globally consistent.

e There are no jumping elements.

e Geometric theorems are true once-and-forever.
e Randomized proving works.

e Self exploring Loci.

e We have generic tools for computational kinematics.

6 Randomized proving and continuity

To keep its own data structures clean, our program needs consistent information about
incidences and equalities that occur in configurations. Such incidences may either be trivial
consequences of the construction or arise from geometric theorems like the altitudes of a
triangle meeting in a point. We actually get this information by a randomized theorem
checking technique. Enough random instances of a configuration are generated and for each
of them the conjectured incidence is checked. This is done until the program either accepts
the theorem with a certain high probability or it rejects it, if a counterexample was found.

To be really reliable, the randomized theorem checking engine needs enough (!) ran-
dom (!) examples. Again there arises a theoretical problem which originates from ambi-
guities in geometric constructions. Consider the theorem stating that the angular bisectors
of the sides of a triangle meet in a point. Due to the intrinsic ambiguity of the angular
bisector operation this sentence stated as such is not true. Consider the drawing in the
picture below. It shows two valid instances of the construction: Take three points — form
the three joins of any pair of them — draw the three angular bisectors of any pair of lines.
In one of the drawings the chosen angular bisectors meet in the other they do not.

For the theorem checking the program does a “random walk” that stays always in the
desired component of the configuration space. Staying in the correct component during this
random walk again depends on consistent and continuous behavior of dependent elements.



Depending on the choices the angular bisectors of a triangle can intersect or not.

7 Complexity issues

Let us briefly sketch the issues of algorithmic complexity that arise in this context (details
and proofs can be found in [13]). In fact, two fundamental questions can be formulated
that capture the main algorithmic questions of dynamic geometry:

e Reachability problem: Is it possible to move the free points such that a first
instance is smoothly deformed into a specific second one?

e Tracing problem: How can a dynamic geometry program decide after a move what
instance to draw for the new position of the free elements?

In fact it makes an essential difference whether one allows in the reachability problem only
real coordinates of the free elements or also complex paths. For the real version it can be
proved that (after suitable formalization) the reachability problem is in general PSPACE-
hard. It is still NP-hard if one restricts oneself to constructions that only use join, meet,
and angular bisector operations. The Tracing problem turns out to be (at least) NP-hard.
We briefly sketch how the above results can be achieved. We first focus on the following
result:

Theorem 7.1. Let C be a geometric straight line program that uses at most three angular
bisector operations and except of this only join and meet operations. Furthermore let Iy and
Iy be two instances of C that differ only in the choice of one angular bisector. It is NP-hard
to decide whether Iy can be moved continuously into Io by a real continuous motion of the
free points of C.

In order to sketch a proof of this theorem we describe how a reduction of the well known
3-SAT problem to the real reachability problem can be achieved. Our reduction proceeds



in several steps. The first step consists of transforming 3-SAT to an algebraic setup. For
this let us first formally state the 3-SAT decision problem: _
3-SAT: Let B = (by, ... ,b,) be boolean variables, and let the literals over B be B =
(b1, ... ,bn, b1, ... ,=by). Furthermore let C1, ... ,Cy be clauses formed by disjunction
of three literals from B. Decide whether there is a truth assignment for B that satisfies all
clauses C, ... ,C) simultaneously.

We may w.l.o.g. assume that each variable occurs at most once in each clause. We give
a (polynomial time) procedure that transfers each instance of 3-SAT into a corresponding
problem concerning the roots of a multivariate polynomial. Let by, ... ,b, be the boolean
variables and let C1, ... ,Cy be the clauses of a concrete 3-SAT S. To each b; we assign a
formal variable z;. For a literal I; € {b;, —b;} we set

N oz if l; =b;,
f(-'Bz) T { 1- ZT; if lz = —|bi,
Assume that for each j =1, ... , k the clause Cj is of the form l? \Y lg \% l{ where the literal
lf is either b; or —b;. We set
Fy = f(H)- f(#)- 1)

Finally we set

k
Fs =) _Fj.
j=1

By this translation for instance the 3-SAT formula (b; V —b3 V bs) A (=bg V by V —b5) is
translated to (z1- (1 —z3) - z5) + ((1 —22) - 4 - (1 — x5)). The satisfying truth assignments
for S and the roots of F(S) in [0,1]" are related by the following lemma (here [0, 1] denotes
the closed interval between 0 and 1).

Lemma 7.2. S has a satisfying truth assignment if and only if there are (z1, ... ,x,) €
[0,1]" with Fs(z1, ... ,zp,) = 0.

Proof. If S has a concrete satisfying truth assignment (b1, ... ,b,) € {TRUE, FALSE}" we
set

. J 0 ifb; = TRUE,
Ti= 1 iy, = FALSE,

Since every clause contains at least one true literal we the get that all fq, ... , fi are zero.
This yields that Fy is zero as well. Conversely, assume that there are values (z1, ... ,z,) €
[0,1]" such that Fs(zi, ... ,zn) = 0. If the z; are chosen in the interval [0,1] all f; are

non-negative. Thus if Z?Zl f; = 0 implies that all f; are zero. However each f; can only
be zero if at least one of its factors is zero. By setting

b TrRUE if z; =0,
" | Fawse if z; #0,

We get a satisfying truth assignment for S. O



In the next step of our reduction we simulate the algebraic computation of the polyno-
mial Fg by an elementary geometric construction. For this we take a line on which we fix
positions of the points 0 and 1 to define a scale of measurement. Each point on the line
corresponds then to a certain value. Multiplication and addition of values on the line can be
performed by the classical von Staudt constructions (see picture below). (The parallelisms
that occur in these construction can — after fixing a line at infinity — entirely expressed by
joins and meets.)

Von Staudt constructions for addition and multiplication.

The calculation of the polynomial Fs can be decomposed into elementary arithmetic
operations. The entire construction of the geometric analogon to Fg contains n free points
T1, ... ,T, as input variables and one dependent point g as output variable. If we restrict
the position of the input points to the interval [0, 1] on the computation line, we see that
the point g can only be moved to the origin if the original 3-SAT problem S was satisfiable.
Restricting the input points to the interval can be done by a small geometric gadget that
uses Thales Theorem.

Finally, we construct a semi-free point that can move only on a small circle around the
output point. We can detect whether this point can circle around the origin by an angular
bisector construction. For this we join this point to the origin and form the three times
iterated angular bisector with our calculation line. Schematically the construction is shown
in the following picture.

Construction of a “geometric locker”.



The whole construction forms a kind of geometric locker. Opening the locker corresponds
to interchanging

We associate the following reachability problem to this construction. Is it possible from
an arbitrary position of the input points to move in a real path such that the final angular
bisector is rotated by an angle of 90° and all free points reached their initial position again.
The whole construction forms a kind of geometric locker. Opening the locker corresponds
to achieve the desired position of the angular bisector, but for this one has to know the
correct positions of the code dials (the input variables). Opening the locker proceeds by
first moving the dials to the right position, changing the the angular bisectors position and
finally moving the dials back to the original position.

It is not difficult to prove that the corresponding reachability question is equivalent to
finding a satisfying truth assignment for our original 3-SAT problem S. The argument for
this goes as follows:

e The only way that the final angular bisector can make this 90° turn is that the line
through the origin and through the point that is restricted to the circle around ¢
makes a full turn.

e This is only possible if p and the origin get so close such that the circle around p
contains the origin.

e This is only possible if the input points z; can be moved to a position that corresponds
to a satisfying truth assignment of S.

Thus changing the position of the final angular bisector requires that we know a satis-
fying truth assignment for S. This finishes our sketch of the proof of Theorem 7.1.
The other main Theorem one can proof is the following.

Theorem 7.3. Given a geometric straight line Program P that contains exactly one free
point p. Furthermore given two instances A and B such that p is at position a in A and p
is at position b in B. Let p(t) : [0,1] — [a,b] be a concrete (straight) movement of p with
p(0) = a and p(1) = b. It is NP-hard to decide whether a continuous evaluation of P under
this movement that starts at instance A ends up at the instance B.

We very briefly sketch idea behind the proof of this theorem. We combine our previous
construction with a kind of “automatic safe cracker” that while moving the point p explores
systematically all positions of the input variables, and for every position tries to change the
location of the angular bisector. If the original 3-SAT instance S had a satisfying truth
assignment, then the final angular bisector will have changed its position when p reached
its end situation p(1). Hence from the final instance of the configuration we can read of
whether S had a satisfying truth assignment.

8 Remarks

More information about the software and the underlying mathematics can be found on the
Cinderella Website at http://www.cinderella.de.
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