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1 Introduction

This article gives my very personal view of the development of (mathe-
matical) software in the past and in the future. It is based both on my
experiences as a user and as an author of math software [1], and also as
a non-software-using mathematician.

This is not a real mathematical article. Probably the conclusions of
this article could also be applied to completely different types of software,
not even necessarily scientific software. Try it.

Nevertheless, it is a mathematical article, since I would like to call
mathematicians all over the world to participate in the process of creat-
ing better tools for communicating mathematics. It is our chance to
change the way mathematics is perceived by non-mathematicians or
early students, it is the chance to teach more and understand more.

Instead of filling this article with lots of figures and pictures I decided
to add links to many relevant web sites. This gives all the necessary
illustrations without having to worry about copyright issues. You should
consider reading the online version with clickable hyperlinks.

I will start by trying to identify what I call the “Ten Year Cycle of
Software Innovation,” which will almost automatically ask for the next
innovations that will come. Then I try to spot at least a few requirements
that I consider essential for the future. For the rest of this article, “ten
years” almost always means “more or less ten years.”

2 The Ten Year Cycle

Let us look back in the development of mathematical software. Moores’
Law tells us, that every 18 months processing speed doubles. This law
has held a long time now, and despite the predictions that it cannot go
on any longer, there is currently no end within sight1. But what happens
with all the computing power?

Instead of using the processor speed increase only for rushing through
the same calculations that had been done a few years ago using the same
1 Physically, there must be an end, and right now it is expected around 2030.

But still, it might happen that there will be some other technical break-
through, maybe another processor technology, maybe quantum computing,
that will make Moores’ Law continue.



software, much of it is spend for new software elements, like user in-
terfaces, desktop environments, inter-process/inter-network communica-
tions, and so on. Many people complain about the fact, that new versions
of a software package seem to be slower, even if run on a faster machine.
This is annnoying, but most of the times it is not recognized that the
new version indeed delivers enhanced user interaction. I do not consider
it bad spending computing resources for making computing resources
more accessible.

Let us turn to the timeline of computing history and try to find the
milestones in math software evolution.

2.1 More Than 30 Years Ago

Let me just pick a few events in the “stone ages” of computing to get
started. Many computing timelines can be found on the internet, I used
(among others) the Computing History of Hofstra University [2]

It was 60 years ago, in January 1940, when the first Bell Labs relay
computer was operational, the Complex Number Calculator [3]. This was
hardware, not software, but nevertheless very “mathematical hardware.”
It was demonstrated in September 1940 at the American Mathematical
Association meeting via a remote terminal. Also in 1940, Konrad Zuse
[4] completes the first fully functioning electro-mechanical computer of
the world, the Z2.

5 years later, John von Neumann introduces the concept of a stored-
program computer, and Konrad Zuse develops the first programming
language, Plankalkül. Also in 1945, the concept of a “bug” is introduced,
although at that time it was a hardware2 bug: A moth caused a relay
failure in a prototype of the Mark II computer at Harvard.

Zuses’ Z4 survives World War II and is reinstalled at ETH Zürich in
1950, where it continues to work until 1954 [5]. This decision was made
by Eduard Stiefel, who initiated the Institute for Applied Mathematics
at ETH. This move made the institute at that time the one with the
most available computing power on the European continent.

From 1954 on FORTRAN (FORmula TRANSlation) is invented by
John Backus [6] and others at IBM, with a compiler following in 1957.
Being the first scientific computer programming language, it has had
a strong influence on mathematical software, and it is still popular for
numerical calculations that depend on raw processing power.

Another important language was and is LISP, introduced by John
McCarthy [7] in 1959. In fact, the creation of new programming lan-
guages is the main software development during the following years.

In 1967, the first hand-held calculator was invented by Jack Kilby,
Jerry Merryman, and James van Tassel at Texas Instruments [8]. Finally,
simple calculations could be done without having to reserve a special
room for the computer.
2 At that time there was no and could not be a real distinction between

hardware and software, even the terms were not introduced at that time



As of 1969, IBM started to unbundle hardware and software3. This is
a good point to start looking at the mathematical software development.

2.2 30 Years Ago: Before Visualization

It was around thirty years ago that computing power became broadly
accessible for non-military scientific research4. The automatization of
computations, the incredible speed and exactness offered new possibili-
ties in mathematics. At the same time, new research branches had to be
explored – numerical stability, generation of random numbers, or algo-
rithms and their complexity, just to name a few. The famous books of
Knuth [10] reflect most of these trends, and at the same time they show
that it was then necessary to have computer and mathematics experts to
do not only the programming, but also feed the input into the software
and to interpret the output. The concept of a user interface was almost
unknown, except for the visionary work of Xerox Palo Alto Research
Center [11], where the Alto mini-computer was built as early as in 1972
[12].

A very short characterization of mathematical software in the 1970s
could be that computing power can be used as an aid for expert mathe-
maticians.

2.3 20 Years Ago: Computer Graphics

The commercial successor of the Alto, the Xerox Star [13], in 1981
marked the beginning of a decade that changed a lot5. Computers in
general became cheaper, i.e. affordable, even for home use – the “home
computer” was a concept of the 80s, which was superceded by the “perso-
nal computer.” Bit-mapped computer graphics became affordable, with
more pixels in more colors every year. The output channel of mathemat-
ical software could be and was improved, and a lot of work was done in
visualization techniques. This lead to an easier way to access mathemat-
ics. Still expert knowledge was necessary to change which mathemati-
cal facts should be shown: Although the now popular software package
Maple [15] had been around since 1980, there were only 300 users in 1987,
the year before Waterloo Maple. In the same year 1988 another software
was introduced that helped to change the situation, Mathematica [16].

The eighties could be summarized by saying that mathematics is done
traditionally, but can be shown to a wide audience.

3 It is interesting that companies like Microsoft try and succeed to bundle
them again

4 There is probably no better event to characterize the “going public” of
computing resources than the first email by Ray Tomlinson in 1971 [9].

5 The Star took a lot of its user interface design concepts from Ivan Suther-
lands’ [14] Sketchpad, the first interactive graphics software, developed in
the early sixties.



2.4 10 Years Ago: Interactive Visualization

Not only Mathematica was introduced in the late eighties, there was also
a now famous conference in Grenoble in 1989 that could be claimed as
the birth of modern dynamic geometry software. After some time these
packages, Cabri Géomètre [17] and Geometers’ Sketchpad [18], became
available commercially. There is no doubt that these software packages
had some, significant impact on mathematics education, since for the first
time true interaction with mathematical objects in a mathematical way
was possible (though there is still a need for expert guidance). Of course,
this never would have been possible without fast computer graphics and
mice becoming standard output and input devices.

The nineties really introduced new ways to do mathematics for ev-
erybody.

2.5 The Millenium?

Extrapolating from this ten year cycle of software innovation we should
expect a new quantum leap for the millenium. This quantum leap is
not just faster software caused by new hardware. We can be sure that
hardware will become better and better as it always did, we just have to
find the applications to exploit the new possibibilities.

A rough analysis of the history of (math) software evolution actually
shows two interwoven development processes: On the one hand, every ten
years “something really great” is introduced to the public and changes
the way how we use computers. On the other hand, most of the novel-
ties existed before they became widespread: First as a dream of some
scientist, then as a scientific prototype, then as a first – commercially
not always successful – product. And, these stages seem to be reached in
a similar ten-year cycle. To support this theory at least a little think of
the Desktop metaphor: it was initiated as a user interface in the 60s, the
first scientific prototypes came in the early 70s, in the 80s you could buy
software for it, in the 90s it was well established (and nowadays most
people cannot live without it).

So, where is the next generation? We have ultrafast high resolution
3d computer graphics, high-bandwidth cheap networking, even at home,
it seems that we do not have to care about hardware6. What can we do
with it? What do we want to do with it? And: How can we do it?

6 Jon Borwein points out that we should care about hardware in an inter-
national context. He is right, but from the software engineering point of
view we should care less. It would be better, if it were possible to close the
gaps between the technological equipments of different countries, which can
only mean to raise everybody to the current standard in North America and
Western Europe.



3 Better Software for Better Mathematics

Three key ingredients will help to build these better tools for doing math-
ematics: Ease of use, software intelligence, and software interoperability.

3.1 Easy Software

The first important step seems to be a commonplace not very special
to math software. But it cannot be stressed enough that software must
be easy to use and easy to install. Good software should render system
administrators obsolete – how often did you wait for some software to
be installed or fixed? Software manufacturers should spend some time
to create install processes that care just about everything: Why should
I as a mathematician have to know what a “CLASSPATH” is?

Another important part of mathematical software is the user inter-
face. Most often mathematical software comes with a barely understand-
able user interface. Actually, most user interfaces differ from punchcard
readers just by using a keyboard to type directly into the computer.
Many mathematicians do not think that this is a major drawback –
“this software is for specialists who know what to do!” or “we had to
take care with the computations and did not have the time to create a
nice GUI” are common justifications for this lack of comfort. But it is
not just a lack of comfort, it is a real barrier for the rest of the world
to use the software – and to work with the mathematical content pro-
vided by it. It is like publishing a notepad with some scribbling on it
instead of typing a paper. Much of the work of software development
is trashcan-ready just because of omitting the step of creating a (good)
user interface7.

I want to finish each issue identified with a good example or two that
show that we have left the stage of just dreaming a scientists’ dream,
that there are products available, and it will be feasible to expect the
widespread adoption within a few years.

For the ease of use part, both of the software and the installation,
there are two examples, that could eventually merge to a single one. The
Mac OS of Apple Computer [19] has always been famous for its consistent
and facile handling, which was also fostered by the rigid application
development guidelines for third-party software. I for myself had to learn
that Mac OS is even easier to use than I expected it, and most problems
I had with it came from thinking too complexly, like I was used to from
working with other operating systems.

7 This is also a drawback of free software (despite all the good things about it):
Without the pressure of a final version, that is put on CD and which must be
accounted for by the developers, important parts are sometimes unfinished
for years. It is like the difference between a technical report and a paper
submitted to a conference: the deadline forces the authors to rethink and
formulate their ideas to make them accessible to the rest of the community.



The other example is the metamorphosis of Unix, which is close to
become an operating system for any user due to the advent of Linux.
Some parts still need to be improved, but for instance the installation
procedure of the Mandrake distribution [20] is faster and easier than the
installation of Microsoft Windows.

3.2 Intelligent Software

Many mathematical problems that are tackled using the help of a com-
puter, especially in teaching and learning mathematics, are easy with
respect to the computational requirements. Differentiation of functions
and even solving most integrals that appear in calculus courses do not
take more than a few milliseconds. How can we then spend all the avail-
able CPU power?

The answer is intelligent software. Despite being an important vision
of the early years of scientific computation, Artificial Intelligence (AI)
never became a serious application. Most expert systems are based on
database queries together with good ranking functions for the results.
Most questions are not answered by automatic deduction, but can be
solved by googling [21] them – type them into the search field of your
browser and the most relevant web sites will be shown in a few seconds.

But when it comes to mathematics we cannot expect to find the
answers to the problems on the internet. In fact, it is not easy at all
to formulate mathematical questions in a way to make standard queries
to databases8. Only for special purposes the problem is solved, see for
example the great database of integer sequences by Neil Sloane [23].

So here is a proposition for the unused CPU cycles: Let the software
understand what the user is doing. Guide him (or her), point out what
next operation is promising, which simplification leads to a nicer formula,
which known results have a similar structure. Try to find alternate ways
of doing it, that lead to more insight, give additional evidence or even
proofs of facts. Discover repetitive patterns in the work, offer shortcuts
that avoid theses error-prone repetitions.

This goes far beyond visualization: computer aided research where
the computer is more like a good scientific assistent who knows enough
mathematics to make good suggestions and to quickly check conjectures,
though the final work of creating a good proof remains for the professor.

On a lower level this goal is achieved by Cinderella [1], which can be
used as an authoring tool for students’ exercises. Here one complete solu-
tion of a construction exercise must be given by the author (the teacher
or educational software designer), together with intermediate solutions
(subgoals) that lead to the final construction. The automatic theorem
checking engine of Cinderella tries to identify whether the student has
reached one of these subgoals and is able to trigger certain actions – like
writing out a text or jumping to a URL – in that case. This definition
8 The OpenMath initiative tries to find such standards, but it looks like we

are still far away from a real solution to this problem, see also [22].



of subgoals detaches the solution from the actual construction sequence
the teacher used, and thus also unfamiliar or even unknown solutions to
an exercise are still accepted. Many examples can be found at Mathsnet
UK [24].

The weak part here is that we still need an author for these computer
guided exercises. It is not necessary to have an expert to create these,
but still the author needs some knowledge – actually, one solution must
be known, which is a problem if we would try to guide mathematicians
working on problems for which no answer is known. Two strategies in
conjunction could be used in the future to address this issue: First, when-
ever a user does something which can be verified as being meaningful
in some sense, the software could request a justification for that step:
Why did he do it? Why is it a valid transformation? What did the user
expect from that transformation? With the networking capabilities of
today such information can be gathered and re-used with other users.

A possible scenario: Mathematician A is trying to find an answer to
some question and types in a formula in a computer algebra system. After
some work he finds another representation of the formula and is able to
proceed with it on his original problem. The computer algebra system
asks for the motivation and the success of his software use, records it
and stores it in a database. A few weeks later, mathematician B uses the
same formula, with the same or another problem in mind. After he types
it in his computer algebra system, he is prompted with the information
and the solution of mathematician A, and – in the best case – is able
to quickly proceed with it. Other continuations would be that he can
contact A and talk with him, or he could provide more information that
is related to the formula.

On the educational geometry software level a similar goal is even eas-
ier to achieve (and will probably be implemented within the next few
years): If Cinderella detects a correct solution that is not the same so-
lution as the one of the teacher, it could request additional information
that will be reused for other students that follow the same new construc-
tion sequence. This does not create more work than the usual classroom
situation: A new solution presented by a student usually requires an
explanation by the student and a review by the teacher.

The second strategy extends this first concept by letting the computer
create the alternate solutions, either by random or by search algorithms.
The justification of necessary steps in a proof are then still left to the ex-
pert mathematician, but the proof may be found much easier and faster
than by ordinary methods. Here I want to point out that techniques like
randomized checking (as used in Cinderella) are probably best suited for
the fast rejection of dead ends in proving.

3.3 Software Interoperability

The last point which is important in my eyes is software interoperability.
It is the key to better, more versatile software without introducing new



huge systems that cannot be handled anymore. Every math software
author should be able to concentrate on the things he can do best and
using the components other can do better. Make it easy to link to other
software packages! Possible ways are easy scripting interfaces, plug-in
specifications, or open source code. As a last resort, there is your ability
to provide a certain functionality via a small application programming
interface on request.

There are three premier examples I want to discuss: Javaview, JDvi
and JLink. All three appeared at the MTCM 2000 conference [25], and
are good indicators of the upcoming software interoperability trend.

Javaview [26] is a software package for online visualization of 3D
geometry and numerical experiments. Students can use it to view their
numerical algorithms online and to interact with them. With Javaview
we have the situation that it is easy to contact the programmers and
to request new interoperability features. Also, it is possible to connect
Javaview, even without the JLink package discussed below. The modular
design of Javaview makes it possible to use only parts of it (for instance
the 3D renderer) for other packages or to extend it for teaching purposes.
A good example for all these aspects is JavaviewLIB [27].

At first sight, JDvi [28] does not seem to be a drastic improvement in
math software development – after all, it is just another viewer for DVI
files produced by the TeX system of Knuth[29]. But there are “next gen-
eration” features: JDvi extends the concept of a DVI viewer to an inter-
active and extendable DVI viewer: Java applets, for example Javaview,
can be integrated into TeX documents and behave as if they were used
within a web browser.

The third example is the JLink package [30] of Mathematica. It is
a good sign to see that also commercial software producers are aware
of the necessity to make it easy to let other software communicate with
their software. JLink is a Java-based version of the mathlink-interface,
that creates two way communication between a Mathematica kernel and
custom software packages. So also here there is no real innovation – the
mathlink interface has been present in Mathematica since the release
of Mathematica 2.0 in 1991 (ten years ago!). But: it has never been so
easy to link Mathematica with other software packages – we were able
to set up a working Cinderella–Mathematica link within a few minutes,
and we could create the first version of the once popular game Pong
(see the color table) using Mathematica for the game programming (ball
movement) and Cinderella as a front end within a few hours.

I think it is not just pure coincidence that all the examples above
were done using the Java programming language [31]. Sun Microsystems
did a good job when they decided to release a easy-to-learn programming
language that supports modularization and messaging, remote invoca-
tion of methods and distribution. Java is not perfect, but it surely helps
to achieve some of the goals mentioned above.



4 Conclusion

Let me repeat the most important statements of this article and add a
few other observations:

The next revolution just began. It looks like there is a big step in software
development every ten years, and there are indications that the next
step must happen and is happening now.

(Math-)Software must be intelligent. A better way of spending all the
CPU time which is currently used for waiting cycles is to understand
what the user intends and to guide him or her to the next actions.

Focus on your strengths, and use those of others. We should not try
to write a huge mathematics application that can do everything.
Instead, everybody should concentrate on the own (mathematical)
strengths, and enable others to use them.

(Math-)Software must be able to talk to each other. It must be very easy,
at least for mathematically skilled programmers, to set up communi-
cation between different applications, either via application program-
ming interfaces or via shared data formats. An excellent example is
the JLink interface to Mathematica.

We do not need consortia (yet). Currently, there is no need for another
consortium that specifies the exchange protocols used for math soft-
ware. Since the mathematical software community is not that large
to become unmanageable, we can instead rely on standard protocols
like the ones that come with Java.

Pure academic software can be successful. It is a myth that scientific
software is boring and that we need multimedia animations, car-
toons, sound effects and other gimmicks to raise the curiosity of
students. Make the scientific software easy to use and it will profit
from the fact that science itself is interesting.

Do not underestimate the value of the user interface. It is not true that
software that is for a very special purpose does not need a good
user interface, since it is used by a maximum of two people. It is
true, however, that software with a bad user interface is used by a
maximum of two people.

Installation should never be a barrier. Software must be easy to install
(and de-install). Everything that needs special libraries or configura-
tions has to take care of that itself, without destroying other installed
software. The optimal solution would be software that does not need
any installation and just works.
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