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Abstract 

Building on dual-space theories, the three-space theory of 
problem solving suggests to add search of a model space in 
addition to search of experiment and hypothesis space. This 
study aimed at exploring the three postulated spaces, 
especially model space, by means of verbal protocols. 
Participants (n=32) were asked to think aloud while working 
with a computer based learning program. With this program 
they could learn about torques in physics using interactive 
graphics in which experiments with levers and forces could be 
conducted. Their knowledge about torques was tested before 
and after working with the program. Verbal protocols were 
analyzed with regard to the amount of search of the three 
spaces and regarding the quality of the participants’ models 
for torques. The three postulated spaces could be reliably 
identified in the protocols. For validity, the model quality 
score was related to performance and predicted final 
knowledge beyond prior knowledge. Our results add to the 
validity of model space and allow us to derive more specific 
hypotheses from the three-space theory. 

Keywords: learning in physics; problem solving; verbal 
protocols. 

Introduction 

Problem Solving as Search of Spaces 

Problem solving, as commonly defined, occurs when an 

actual state has to be transformed to a goal state using 

appropriate operators. Since Newell and Simon (1972) 

problem solving is described as search of a problem space.  

This space contains possible states, which are searched to 

find a state that corresponds to the solution (goal state). In 

doing so, operators (e.g., inferences) are used to move 

between states. However, when considering problems that 

involve the induction of rules or the formation of new 

concepts, a single problem space does not seem appropriate 

anymore to describe phenomena comprehensively. In 

Greeno’s (1978) typology of problems, which distinguishes 

problems of inducing structure, of transformation, and of 

arrangement, these kinds of problems could be assigned to 

the category of induction problems. To account for a larger 

scope of problems, including induction problems, the 

problem space framework was expanded to dual-space 

theories. 

Simon and Lea (1974) suggested two spaces, a rule space 

and an instance space. The rule space contains rules that can 

be applied to the problem solving task, while the instance 

space consists of possible states of the problem. Rules that 

are generated in rule space are tested in instance space by 

applying them to instances. In turn, results of this test 

process are used as basis to modify the rules if necessary. 

Assuming two spaces, the problem space framework could 

not only be applied to solving simple problems like those 

studied by Newell and Simon (1972), but also to problems 

that involve rule induction and were until then studied from 

a concept formation view (e.g., Bruner, Goodnow, & 

Austin, 1956). While one problem space is sufficient to 

describe typical problem solving, rule induction needs both, 

a rule space and an instance space. Simon and Lea’s (1974) 

dual-space theory is still regarded as useful in contemporary 

research on complex problem solving in computer-

simulated scenarios (Fischer, Greiff, & Funke, 2012). 

The idea of search of two spaces was expanded by Klahr 

and Dunbar (1988) in their Scientific Discovery as Dual 

Search (SDDS) theory. They focused on the process of 

scientific discovery, during which hypotheses have to be 

formed and experiments have to be designed and conducted. 

Similarly to induction problems, in scientific reasoning rules 

or relationships applying to the concepts under investigation 

have to be discovered. Klahr and Dunbar (1988) 

conceptualize scientific reasoning as search of two 

interacting problem spaces, similar to Simon and Lea’s 

(1974) rule and instance space. Hypothesis space consists of 

generated hypotheses, and experiment space contains 

possible experiments that can be run. Search of hypothesis 

space is determined by prior knowledge on the one hand and 

by results from running experiment space on the other hand. 

Movement in experiment space, that is choosing and 

conducting experiments, is guided by the current hypothesis 

to be tested. Results of the experiments are evaluated again 

in hypothesis space. 



Representation of the Problem 

Greeno (1978) argues that one of the main processes 

involved in induction problems is understanding. So how is 

understanding represented in problem space search theories 

so far? In Newell and Simon’s (1972) theory, the problem 

space consists of an internal representation of the problem, 

constructed by the problem solver. This representation could 

be considered as the problem solver’s understanding of the 

problem. It does not need to be the same for every problem 

solver but depends on how the problem is understood. 

Hayes and Simon (1974) further elaborated the 

understanding process that takes place when a problem 

space is generated. If problem solving fails, the problem 

space has to be revised, which can involve a different 

understanding of the problem. In dual-space theories the 

understanding process got a bit out of sight, at least it was 

not explicitly referred to it. Klahr and Dunbar (1988) argue 

that prior knowledge should always be taken into account 

when studying scientific discovery, as in real scientific 

contexts prior knowledge is always relevant. They consider 

the possibility that the formulation of hypotheses is 

influenced by prior knowledge, especially in the beginning 

of working on a problem, when a frame for the problem is 

generated. In terms of Newell and Simon, prior knowledge 

could affect how the problem is internally represented, that 

is what the problem space looks like. 

The Three-Space-Search Theory of Problem 

Solving 

Evidence for the importance to consider the impact of 

different initial representations of a problem was found by 

Burns and Vollmeyer (2002) in their research on dual-space 

search. They analyzed verbal protocols of participants who 

had to discover the links between inputs and outputs in a 

linear system. Participants started with very different 

hypotheses which represented different ideas of what kinds 

of links could be considered. Thus, learners seemed to have 

a certain model of the task which determined the hypotheses 

that they took into account. The term model could be 

translated as the current representation or understanding of 

the task to be worked with or the concept to be learned. 

Their results of verbal protocol analyses led Burns and 

Vollmeyer (2000) to suggest a third space, model space, 

which consists of possible representations of a problem or a 

concept. The current state in model space (the current 

representation) defines the hypothesis space as it determines 

the possible hypotheses to be tested. Hypothesis space in 

turn interacts with experiment space. Experiments are 

conducted to test the hypotheses and results are evaluated to 

confirm or reject hypotheses. When hypotheses are 

(repeatedly) rejected by results of the experiments, there 

may come a point when movement in model space is 

necessary and model space is searched for another 

representation that leads to the formulation of different 

hypotheses. 

Aim of the Study 

In the present study we attempt to further investigate the 

three-space theory outlined above, especially to explore the 

concept of model space. The task we use to study the three 

spaces is a computer based physics learning program on the 

concept of torques. In this program, learners are presented 

with interactive graphics where they can manipulate levers 

and forces and observe the effects. This design allows them 

to conduct experiments by manipulating the graphics and so 

to test hypotheses about relations between levers, forces, 

and torques. Thus, the task can be seen as to build a concept 

of how torques work, which includes induction of rules that 

apply to this concept. Rather than other tasks that are often 

used when studying problem solving, concept formation or 

rule induction, this task resembles to a greater extent 

learning tasks that students are faced with in school. While 

participants were working with the computer program, 

verbal protocols were recorded. 

This study set out to answer three questions: (1) Can we 

reliably distinguish search of model space from search of 

hypothesis or experiment space in the verbal protocols? (2) 

Can we show the validity of our measures for search of 

model space? (3) Can search of model space predict final 

knowledge better than search of hypothesis space? 

Method 

The Problem Solving Task 

The problem solving task in this study was the computer 

based learning program “How to visualize torques” 

(Wünscher & Ehmke, 2002). Working with this program, 

students can acquire an understanding of the concept of 

torques and learn about variables that can be considered for 

torques, e.g. the length or shape of a lever, or the power or 

angle of a force. The program consists of five units on 

different aspects of torques. It includes twelve interactive 

graphics in which students can manipulate levers and forces. 

 

 
 

Figure 1: Example of an interactive graphic in the 

computer based learning program (red points can be 

moved). 

 



In the graphic shown in Figure 1 for example, they can 

increase or decrease the length of the levers and/or the 

power of a force. As they do so, the other variables adjust to 

keep the construction balanced and the students can observe 

the effects of their manipulation. The program is composed 

in a way that at first students are given the opportunity to 

discover certain principles of torques on their own by 

working with an interactive graphic. Afterwards they are 

presented with a text containing information and 

explanations. 

Procedure 

Participants were 32 undergraduate psychology students 

(mean age: 25.3 years, SD = 9.7, 72% female). Their prior 

knowledge on torques was assessed by a test (prior 

knowledge test). Then they received a standardized 

instruction to think aloud including some warm-up tasks in 

order to facilitate verbalization (Ericsson & Simon, 1993). 

In the warm-up tasks participants were asked to think aloud 

while multiplying two numbers in the head, while counting 

the windows in their parents’ home and while naming 20 

animals. Students had then 35 minutes to work with the 

learning program and were asked to think aloud while doing 

this. After learning with the program, participants were 

given another test to assess their final knowledge on torques 

(final knowledge test). All together the procedure took 

about 90 minutes. 

Knowledge Tests 

The final knowledge test contained twelve items on torques. 

The items were of different difficulties and of various 

formats. For some items students had to calculate, in others 

they had to draw or to give written answers. The test 

included items whose answers could be directly learned 

from the program, but also transfer items. Students could 

reach up to 64 points in this test. The prior knowledge test 

consisted of five items that were taken from the final 

knowledge test and were representative of the diverse 

difficulties and formats. Here the maximum score was 21. 

Analysis of Verbal Protocols 

Coding search of the three spaces To analyze the verbal 

protocols, we developed a coding system, using sentences as 

coding segments. Each sentence was coded as referring to 

experiment space, hypothesis space or model space. 

Experiment space was coded if participants verbalized their 

manipulations of the graphics. Hypothesis space was coded 

if participants stated hypotheses or if they formulated simple 

rules that they derived from experimenting with the 

graphics. Model space was coded if verbalizations showed 

that participants had an understanding of the concept of 

torques or related concepts. Indicators for understanding 

were for example participants formulating explanations for 

observed phenomena or drawing analogies. For coding 

model space it did not matter whether the participants’ 

understanding of torques was correct or wrong from an 

objective point of view. For verbalizations that did not refer 

to the three spaces, we had different categories such as 

metacognition or motivation and emotion, which are not 

further described here. Table 1 gives examples for 

statements that were coded as verbalizations of search of the 

three spaces. Interraterreliability was computed for four of 

the 32 protocols. We got a mean Cohen’s kappa of .72 

which can be considered as substantial (Landis & Koch, 

1977). 

Analysis of the protocols resulted in a number of 

sentences referring to each of the three spaces. To account 

for different total lengths of the protocols, we also 

calculated the percentage of each category in the whole 

protocol by dividing the number of sentences of the 

category by the total number of sentences in the protocol. 

 

Table 1: Example statements for categories of the coding 

system. 

 

Category Example statement 

Experiment 

space 

Let’s see what happens if I pull this lever … 

ah, then F gets greater, the force increases 

to 10. 

Hypothesis 

space 

I guess if I double l2, F1 will presumably 

get half as great. 

Model 

space 

If I pull with a greater force, the lever must 

logically become shorter to keep the 

balance.  

 

Rating quality of the models (model score) In addition to 

the amount of sentences coded as model space, it seemed 

also important what kind of a model participants had, that is 

what their understanding of torques was like. So we also 

rated the quality of the model statements. Consecutive 

sentences whose content dealt with the same aspect of 

torques were merged and counted as one model. Each of 

these models was then rated with regard to quality by 

assigning a score of 0, 1 or 2 (correctness score). Here, 

correctness and precision were taken into account. The 

model was assigned 0 if someone stated an idea that was 

completely incorrect. A score of 1 was assigned for partially 

correct or imprecise models, and 2 was assigned for correct 

and precisely stated models. Additionally to the correctness 

score, each model could get an extra point in either two 

ways. First, a quality rating of a model should also take into 

account whether participants developed the model on their 

own or if they learned a new principle of torques from the 

explanations presented in the text. Thus, we scored one 

extra point when a model was self-generated by the 

participants while working with a graphic (self-generation 

score). Second, the ability to draw analogies can be seen as 

an indicator of an elaborated understanding. Thus, models 

that included analogies were scored with an extra point 

(analogy score). A model could only get one extra point for 

either self-generation by participant or analogy. If both 

applied, analogy was given priority. The correctness score 

and either the self-generation or the analogy score were 

summed up for each model, so the maximum score a model 



could get was 3. Finally, if a participant’s verbalizations 

included a model that was not, or only marginally, related to 

torques, the score of this model was halved. 

The scores were summed up for all models in a 

participant’s protocol, so that the total score (model score) 

represented quantity of search of model space as well as 

quality of the models. Every protocol was scored 

independently by two raters, who had to come to an 

agreement subsequently by discussion.  

Results 

Performance in the Knowledge Tests 

In the prior knowledge test participants on average had a 

score of 5.4 (SD = 5.6) out of the maximum of 21. In the 

final knowledge test the average score was 29.4 (SD = 12.2) 

out of the maximum of 64. These two scores cannot be 

compared directly, as the prior knowledge test contained 

only five of the twelve final knowledge test items. To 

clearly demonstrate that learning took place in the task, 

another score was composed of the five items in the final 

knowledge test that were identical to the prior knowledge 

test. A mean score of 13.9 (SD = 4.7) resulted, which 

differed significantly from the prior knowledge test, 

t(31) = 8.4, p < .01.  

Progress during the Learning Program 

On average participants worked on 7.1 of the twelve 

interactive graphics (SD = 2.4). To learn everything that was 

required to answer the final knowledge test it was necessary 

to finish the eighth graphic. This graphic was finished by 21 

participants. The last set of graphics was reached by 10 

participants and finished by 2 of them. 

Coding Search of the Three Spaces 

Aim of the study was to identify the three postulated search 

spaces in the verbal protocols. On average the verbal 

protocols consisted of 144 (SD = 50.1) sentences. Table 2 

gives an overview of the results of the coding procedure. 

The numbers of sentences coded as search of each of the 

spaces are reported as well as the percentage of each space 

in the whole protocols. For both measures, experiment space 

and model space were the most frequently coded spaces, 

whereas hypothesis space was found less often. 

 

Table 2: Descriptive statistics of coding the three spaces 

in the verbal protocols. 

 

 Number of 

sentences 

Percentage in 

whole protocol 

 M SD M SD 

Experiment 

space 25.3 13.4 18.7 10.4 

Hypothesis space 14.8 9.8 10.7 7.5 

Model space 25.4 15.2 18.4 10.0 

To see how the three spaces are related to each other, we 

looked at the intercorrelations. Regarding the numbers of 

sentences, hypothesis space and model space were 

correlated positively (r = .43, p = .02), whereas there were 

no significant correlations between the other spaces 

(experiment space and hypothesis space: r = -.07, p = .70; 

experiment space and model space: r = .21, p = .25). When 

looking at the percentage of sentences in the whole protocol, 

the pattern was different. The correlation between 

hypothesis space and model space was not significant 

(r = .13, p = .48), as well as the correlation between 

experiment space and model space (r = .09, p = .62). But 

here we found a significantly negative correlation between 

experiment space and hypothesis space (r = -.36, p = .04). 

We will later consider which of these measures is the better 

predictor for performance. 

Rating Quality of the Models 

The number of models per verbal protocol ranged from 1 to 

26 (M = 9.6, SD = 5.3). The rating of the models resulted in 

a model score that ranged from 0 to 36.5 (M = 13.6, 

SD = 9.0). As stated in the method section, the model score 

reflects quality of the models as well as quantity of search 

of model space, as it was a sum of the scores of each of the 

participant’s models. To have a pure measure of quality we 

also computed the mean score per model for every 

participant, which ranged from 0 to 2.3 (M = 1.3, SD = 0.6). 

The different measures of model space are all interrelated 

(see Table 3). Correlations between measures that include 

quantity and quality ratings are higher than those with the 

pure quality measure (mean score per model). The model 

score shows the highest correlations with other measures. 

Model Space and Performance 

It was hypothesized that model space would be positively 

related to performance. Table 3 shows the correlations 

between the different measures of model space, the prior 

knowledge test and the final knowledge test. Most of the 

model space measures, except the percentage of model 

space, are significantly correlated with final knowledge. 

Among these measures, the model score shows the highest 

correlation with final knowledge. Though, most of the 

differences between the correlations are not significant. 

Only the correlation between percentage of model space and 

final knowledge differs significantly from the one between 

model score and final knowledge (Z = 2.03, p = .02). The 

model score and the mean score per model are also 

significantly related to prior knowledge. This could be 

expected from the three-space theory, as prior knowledge is 

assumed to influence the goodness of one’s models. 

When comparing the two measures number of sentences 

in model space and percentage of model space, we found 

that number of sentences is significantly correlated with 

final knowledge, whereas the percentage is not (Table 3). In 

this context, it should be considered that the total number of 

sentences in the verbal protocols almost significantly 

correlated with final knowledge, r = .31, p = .08. 



Table 3: Correlations between measures of model space and performance. 

 

 2 3 4 5 6 7 

Number of sentences in model space (1) .79** .81** .81** .45** .27 .52** 

Percentage of model space (2)  .68** .65** .41* .26 .34 

Number of models (3)   .90** .42* .24 .66** 

Model score (4)    .71** .37* .71** 

Mean score per model (5)     .43* .47** 

Prior knowledge (6)      .53** 

Final knowledge (7)       

**p<.01, *p<.05 

 

Furthermore, model space was expected to predict final 

knowledge beyond prior knowledge. To test this, we ran a 

stepwise regression analysis with the final knowledge test as 

dependent variable, entering all five measures of model 

space as predictors, to identify the best predictor of final 

knowledge. Model score was extracted as the predictor that 

explained final knowledge best (β = .71, p < .01; R
2
 = .51, 

p < .01). The other model space measures did not contribute 

incrementally to the prediction of final knowledge. 

Having established model score as the best predictor, we 

chose it as the predictor for the regression analysis run to 

test the hypothesis that model space predicts final 

knowledge beyond prior knowledge. This analysis was run 

with the final knowledge test as dependent variable and the 

prior knowledge test as a predictor. When entering the 

model score as an additional predictor, R
2
 increased 

significantly by .31 (Table 4).  

 

Table 4: Regression analysis with final knowledge test as 

dependent variable. 

 

Variable β R
2 

ΔR
2
 

Step 1    

Prior knowledge .53** .28**  

Step 2    

Prior knowledge .31*   

Model score .60**   

  .59** .31** 

**p<.01, *p<.05 

Components of the Model Score 

As reported in the method section, the model score was 

composed of different components. Models were scored for 

correctness/precision and extra points could be assigned for 

self-generation of models by the participants or for drawing 

analogies. By correlating these components with final 

knowledge we intended to examine which of the 

components was most predictive of performance. The 

correlations with final knowledge as well as the 

intercorrelations between the model score components and 

model score are given in Table 5. The correctness 

component shows the highest correlation with final 

knowledge, followed by the self-generation component. The 

analogy component is not significantly related to final 

knowledge. The correctness score is also the component that 

correlates highest with the model score. These results 

indicate that considering self-generation of models and 

drawing analogies does not improve the model quality 

rating. 

 

Table 5: Correlations between components of the model 

score and final knowledge 

 

 2 3 4 5 

Score correctness (1) .77** .54** .99** .73** 

Score self-generation (2)  .30 .85** .55** 

Score analogy (3)   .57** .31 

Model score (4)    .71** 

Final knowledge (5)     

**p<.01, *p<.05 

Comparison of the Three Spaces 

Did the three spaces differ in how predictive they are for 

performance? Table 6 shows the correlations between the 

three spaces (measured as number of sentences and 

percentage) and the final knowledge test. Experiment space 

is not significantly related to final knowledge in either of the 

measures. Hypothesis space correlates significantly with 

final knowledge when measured in number of sentences. 

Model space (number of sentences) shows the highest 

correlation with final knowledge, though compared to the 

correlation with hypothesis space (number of sentences) the 

difference is not significant (Z = 0.63, p = .27). 

 

Table 6: Correlations between search of the three spaces 

and final knowledge 

 

 Prior 

knowledge 

Final 

knowledge 

Number of sentences in 

experiment space -.15 .07 

Number of sentences in 

hypothesis space .10 .39* 

Number of sentences in model 

space .27 .52** 

Percentage of experiment space -.19 -.17 

Percentage of hypothesis space .03 .23 

Percentage of model space .26 .34 

**p<.01, *p<.05 

 



Regarding prior knowledge, we did not find any 

significant correlations with the numbers and percentages of 

the three spaces (Table 6). With respect to model space 

these results contrast to the finding that the model score and 

the mean score per model, which reflect also the model 

quality, are significantly related to prior knowledge 

(Table 3). So, compared to hypothesis space and experiment 

space, for model space we found a relation to prior 

knowledge, at least with quality measures.  

Discussion 

This study set out to explore the concept of model space by 

examining three questions. How successful were we? 

Can we reliably distinguish search of model space 

from search of hypothesis or experiment space? 

Our analyses of the verbal protocols demonstrated that we 

were able to assign each sentence referring to knowledge 

acquisition to either experiment, hypothesis or model space. 

We could do this with acceptable reliability. The new 

construct of a model space had as many sentences as the 

experiment space and more than hypothesis space. In 

addition, we not only performed a quantitative coding, we 

also considered the total number of sentences the students 

produced while learning as well as the quality of the 

models. These different measures were moderately 

correlated. Given that model score correlates highly with all 

other scores we will use this measure for validation. 

Moreover, theoretically it expresses the goodness of the 

students' models. 

Can we show the validity of the model score? 

Our assumption was that having a good model for torques 

should help further knowledge acquisition. Therefore, 

model score should correlate with final knowledge even if 

prior knowledge is controlled. In a regression analysis we 

could demonstrate that indeed model score can predict final 

knowledge which is a clear validation of our coding system. 

Can search of model space predict final knowledge 

better than search of hypothesis space? 

Although the correlation between final knowledge and the 

number of sentences in model space is higher than the one 

with number of sentences in hypothesis space, the difference 

was not significant. This result was in the right direction, 

but better evidence for distinguishing between these spaces 

may come from the evidence of a higher correlation of prior 

knowledge with model score than with search of hypothesis 

space. Such a finding is consistent with the three-space 

theory in which the source of the initial model is prior 

knowledge. However, this answer needs caution and more 

research. 

Future directions 

Our long-term goal is to test whether the three-space theory 

can better predict complex problem solving or science 

learning than a two-space theory. This study took a step 

towards this goal by using verbal protocols to identify the 

types of models people formulate for torques and showing 

that the quality of such models relates to knowledge 

acquisition. The next step will be to develop an instrument 

to measure model quality in the domain of torques. Such an 

instrument will enable us to test further hypotheses derived 

from the three-space theory. 
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