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Abstract: Which route should the garbage collectors' truck
take? Just a simple question, but also the starting point of an
exciting mathematics class. The only “hardware” you need is a
city map, given on a sheet of paper or on the computer screen.
Then lively discussions will take place in the classroom on how
to find an optimal routing for the truck. The aim of this activity
is to develop an algorithm that constructs Eulerian tours in
graphs and to learn about graphs and their properties.
This teaching sequence, and those stemming from discrete
mathematics, in particular combinatorial optimization, are ideal
for training problem solving skills and modeling – general com-
petencies that, influenced by the German National Standards,
are finding their way into curricula.
In this article, we investigate how computers can help in pro-
viding individual teaching tools for students. Within the Visage
project we focus on electronic activities that can enhance explo-
rations with graphs and guide students even if the teacher is not
available – without taking away freedom and creativity.
The software package is embedded into a standard DGS, and it
offers many pre-built and teacher-customizable tools in the area
of graph algorithms.
Until now, there are no complete didactical concepts for teach-
ing graph algorithms, in particular using new media. We see a
huge potential in our methods, and the topic is highly requested
on part of the teachers, as it introduces a modern and highly
relevant part of mathematics into the curriculum.

Kurzreferat:  Wie fährt die Müllabfuhr? Eine einfache Frage,
die der Ausgangspunkt für einen anregenden Mathematikunter-
richt sein kann. Man benötigt nichts weiter als einen Stadtplan,
auf Papier oder auf dem Computerbildschirm, und schon kann
die Arbeit beginnen. Lebhafte Diskussionen entfachen sich
darüber, wie eine optimale Fahrtroute für das Müllauto gefun-
den werden kann. Um dieses Problem zu lösen, erarbeiten
Schülerinnen und Schüler Algorithmen für Eulertouren und
finden einiges über Graphen und ihre Eigenschaften heraus.
Diese Lerneinheit und andere aus der diskreten Mathematik –
und insbesondere der kombinatorischen Optimierung – sind
ideal um Problemlöse- und Modellierungskompetenzen zu ent-
wickeln; allgemeine Kompetenzen, die, beeinflusst durch die
neuen Bildungsstandards, Eingang in die Lehrpläne der Länder
finden.
In diesem Artikel untersuchen wir, wie Computer sinnvoll als
Werkzeuge individuellen Lehren und Lernens in diesem Gebiet
eingesetzt werden können. Im Visage-Projekt entwickeln wir
elektronische Arbeitsmaterialien, mit denen Untersuchungen
von Graphen erleichtert werden können, sowie auch ohne Un-
terstützung durch Lehrerinnen und Lehrer durchgeführt werden
können. Dabei legen wir Wert darauf, die Freiheit und Kreati-
vität der Schülerinnen und Schüler nicht zu beschränken.
Das vorliegende Software-Paket ist in ein bestehendes DGS
                                                            
1 Supported by the DFG Research Center MATHEON "Mathema-

tics for key technologies" in Berlin

integriert und viele Module und Algorithmen sind bereits einge-
baut und einfach durch die Lehrkräfte anzupassen.
Bis heute gibt es keine vollständigen didaktischen Konzepte für
das Unterrichten von Graphenalgorithmen, insbesondere nicht
mit neuen Medien. Wir sehen hier ein großes Entwicklungspo-
tenzial durch unsere Methoden. Zudem gibt es einen großen
Bedarf seitens der Lehrkräfte, die das moderne und relevante
Thema Graphenalgorithmen gerne im Unterricht umsetzen.

ZDM-Classification: D30, K30, N60, N70, U70

1 New Directions Through Standards

Discrete Mathematics is coming to schools. In other
countries there already are initiatives that try to introduce
more of discrete mathematics into mathematics teaching,
e.g., in the USA  (Kenny 1991), Austria (Reichel 2002)
and the Netherlands (Schrijver 2001?). Germany is mov-
ing, too: the new curriculum of Hamburg includes an
optional module of combinatorial optimization (Renz et.
al. 2004). Several other German federal states are also
thinking about integrating discrete mathematics in their
curricula, or did this already.

The new standards of education emphasize the ad-
vancement of general mathematical competencies: prob-
lem solving, modeling, the ability to communicate and
discuss mathematics, use of mathematical representations
and handling of symbolic and formal elements of mathe-
matics. We also refer to Freudenthal (1973), who remarks
that it is accepted by many that students have to be able
to mathematize non-mathematical content, i.e. order it in
a mathematical way that makes it possible to refine its
structure by mathematical means2 – he is not the first to
lay ground for today’s standards, though.

It is not required that these competencies be gained
from classic school subject matter. This affords new free-
dom in choosing topics for school use.

The idea of using topics from discrete mathematics in
school is not new. Starting in the 1970’s several authors,
(Ore 1974, Wippermann 1976, Bigalke 1985) recom-
mended graph theory as a suitable topic to be established
in school. However, this did not catch on, maybe because
the approach was geared too much towards theory. Our
approach, today, is different: problem-oriented, applica-
tion-based and more geared towards algorithms. Thus, the
topic does not stand isolated, but can be linked to differ-
ent knowledge domains from mathematics and other
fields. This can be achieved either by the applications or
the required problem solving and modeling competencies
(compare Hußmann and Lutz-Westphal 2005, Kletzl
2002, Aigner et al. 2003, Lutz-Westphal 2004a, 2004b,
Schuster 2004, Bruder and Weigand 2005).

Some applications stemming from discrete mathemat-
ics offer a particularly quick road to the mathematical
problem without requiring much prior knowledge (cf. our

                                                            
2 “Es wird heute von vielen anerkannt, daß der Schüler auch

lernen muß, einen nicht-mathematischen Stoff (oder nicht ge-
nügend mathematischen Stoff) zu mathematisieren, d.h. so zu
ordnen, daß er eine mathematischer Verfeinerung zugängli-
che Struktur erhält.”
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example in Sect. 3). The mathematical theory can be de-
veloped by the students themselves from questions they
ask naturally. Problem solving and modeling processes
work together. The requirement of the Bildungsstandards
(Kultusministerkonferenz 2003) that “students experience
mathematics as a stimulating, useful and creative field of
activity, in which tools, especially electronic media, are
used in a reasonable way,“3 can be fulfilled with topics
such as this. Graphs allow for a particularly approachable
mathematics exercise, as students themselves can quickly
generate examples for experiments.

Recently, the German Research Foundation (DFG) has
established the MATHEON

4, an institutaion that is devoted
to doing applied mathematical research for key technolo-
gies, e.g. life sciences or telecommunication networks. It
is organized both by application areas and three mathe-
matical fields. One field is “Optimization and Discrete
Mathematics”, while one application area is “Education”.
A major goal of MATHEON is the advancement of mathe-
matics in the public view, and the application area Edu-
cation is also responsible for the implementation of this
goal.

This is evidence for the universal suitability of discrete
mathematics in educational contexts. The topic is easily
accessible for non-mathematicians, the general public, as
well as for beginners, i.e. in K-12 education. Parts of our
work have been used in talks for the general public or in
the “Uni for Kids”, an outreach event for 10-year old
children. It is also appropriate for school activities that
should prepare for more theoretical work in higher
grades. Some of the algorithms we are teaching, respec-
tively we use for teaching are currently standard material
in the beginners’ courses on computer-oriented mathe-
matics taught to bachelor students in mathematics, and
they are the basis for advanced research in Ph.D. pro-
grams. Last, but not least, the projects within MATHEON

show their immediate necessity for industry, and prove
their economic relevance.

2 Individual Learning with Interactive Media

This article concentrates on the use of computer software
to teach and learn about graph algorithms. Before going
into the details, we shall to motivate our computer-centric
research.

Why use a computer at all? First, there is no way to es-
cape the mechanization of teaching, as this is not a didac-
tical question, but rather a political one. Parents, and thus
the government, are pushing technology into teaching,
and rely on teachers to use this for “better” teaching. A
lack of concepts will not stop this development, so we
should try to come up with good concepts now.

It is not enough to claim the motivational aspects of
using computers in the classroom. This may have been
                                                            
3 Original text: “Schülerinnen und Schüler [sollen] Mathema-

tik als anregendes, nutzbringendes und kreatives Betäti-
gungsfeld erleben, in dem auch Hilfsmittel, insbesondere e-
lektronische Medien entsprechend sinnvoll eingesetzt wer-
den”

4 http://www.matheon.de

possible in times where students did not have access to
computers outside school. As this has radically changed
in the last years, and students may have betters computers
at home than we can offer them in class, we should not
rely on this effect.

If we look at the possibilities offered by the computers,
we note that they allow for individual learning speeds and
degrees of difficulty. This makes them – by design – a
good tool for internal differentiation, if used correctly. We
can exploit this in our context if the software is open for
individual progress.

While the above is a general property of computers in
teaching, we also have a two-fold intrinsic reason for
using these machines in teaching.  First, all serious real-
world problems in combinatorial optimization are solved
using computers. Thus, teaching is more realistic if it
takes advantage of the computer as well.

 Second, by understanding the modeling done for the
computer, we can also understand why we have to model
at all, and exercise it. In the example in the next section
we will come back to this, when we discuss the forced
modeling. We also have the chance of exhibiting a very
important detail of modeling: using the right model, a
computer might be able to solve the problem quickly. But
if we are using an inferior model, we might end up with a
problem that is too big even for the fastest computer.5

3 Exemplary Use of a Computer in Teaching
Discrete Mathematics

In this section, we present an example activity in graph
algorithms, using computer-based support material.6 This
material has been presented from a different perspective
in (Kortenkamp 2005).

3.1 Students' Situation

The material that is introduced in this section has been
used for students of grades 4 to 8 (10 to 14 years old) at
all levels; nevertheless, it could be adapted to university
teaching as well, as it is concerned with an important
basic topic from Discrete Mathematics. This activity is
intended to be used for the introduction of the concept of
graphs, and to explore the notion of Eulerian tours.

The general topic is the optimization of tours for gar-
bage collection. Clearly, every student has some basic
knowledge about garbage collection. Watching garbage
collection trucks is an experience from early childhood.
The importance of optimizing the tours of the garbage
collection is obvious.

                                                            
5 Renz et al. (2004) mention this in the Hamburg curriculum,

although a little bit intricately: “Einige der Probleme der
Graphentheorie können auch mit Computereinsatz nicht ge-
löst werden. Hier ist eine geeignete Modellierung unerläss-
lich.”. English translation: “Some graph theoretic problems
cannot be solved, not even with a computer. Here, a suitable
modelling is necessary.”

6 See http://cinderella.de/visage/ for the electronic exercise
sheets and downloadable material.
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Using a computer for finding the shortest, fastest,
nicest, or simply the best route from one place is common
practice. Route finding on the Internet is incredibly fast,
and seems to be trivial.7 Most students do not care about
how these routes are found, though. They do not care
about whether these routes are pre-computed and stored
in a database, or computed using clever algorithms. Actu-
ally, although we have no formal evidence, it seems likely
that students have no idea that it is actually a mathemati-
cal problem that is solved there.

In summary, we have a real-world problem that is
closely connected to the personal experiences of the stu-
dents, and students who know that computers are used to
solve similar problems, but do not know how this is done.

3.2 Activity: Garbage Collectors' Route

Based on the observation that the garbage collection ve-
hicle has to go through every street at least once – which
is also sufficient, as two garbage collectors serve both
sides of the street – students explore tours that do not use
any street twice. First, they work on an electronic exer-
cise sheet that shows a city map of their hometown. They
can add vertices and edges of a graph, and they can run
an algorithm that tries to find a round-trip tour that visits
all edges exactly once.

The electronic exercise sheet is an HTML page with an
embedded Java applet. The Java applet was created using
the Visage-Extension (Kortenkamp and Materlik 2005) of

                                                            
5 The service Google Earth is a premier example: Route fin-

ding seems to be incredibly simple, within seconds we can
see the best route and see a preview of it in a stunning visua-
lization.

Cinderella (Richter-Gebert 1999). This exercise can run
standalone from a local disc or CD-ROM or it can be put
on the web. Besides a Java runtime, which is included by
default on major operating systems, no software installa-
tion is necessary.

As a next step, we let the students work with pencil and
paper. They are supposed to check by hand whether a
given graph admits a Eulerian tour, i.e. a closed tour that
visits every edge exactly once.

The solutions will not be checked by the teacher, but by
the students themselves. They use the next electronic
work sheet to draw the graph and ask for a Eulerian tour.
If there is one, the computer will show one; otherwise the
algorithm will fail and highlight a problematic part of the
graph. In Fig. 1 we can see a graph drawn by a student.

During this phase, students naturally will ask them-
selves8 whether there is an easy way to distinguish be-
tween Eulerian graphs and non-Eulerian ones. The an-
swer to this question is positive – any graph that contains
only vertices of even degree, that is, has an even number
of edges incident to it, is Eulerian, and only these. The
proof of that fact is easy from a mathematician’s point of
view, and can be done by an induction argument, but dis-
covering this conjecture is not as easy.

In this activity, we have added a subliminal clue for ar-
riving at that concept. The vertices in Fig. 2 are colored
automatically in either white or black, depending on their
degree. White vertices have an even degree; black verti-
ces have an odd degree. Our experience is that students
will not notice the coloring at all at first. However, when
they investigate possible reasons for some graphs to be

                                                            
8 If they do not ask themselves, the teacher should activate this

discussion

Fig. 1: A screenshot of an applet used to teach Eulerian graphs and tours to 13-year old students. The ge-
neral topic of the sequence is “What is the tour of a garbage collection vehicle?” Students can draw a
graph onto a map of their hometown Schriesheim and ask for a Eulerian tour through it.
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“good” and others being “bad,” they can use this coloring
as a first hint: Graphs that were proved being Eulerian
(using the built-in algorithm) have only white vertices.

The last part of the sequence is another electronic work
sheet (Fig. 3) that opens the problem further and can be
used a starting point for other, related activities. Students
are given a graph that contains both black and white ver-
tices, and their task is to change the color of all vertices to
white. This is always possible – a theorem about graphs
states that every graph contains an even number of odd-
degree vertices, so we can connect pairs of them with
paths. As the students do not know the theorem yet, they
are invited to play a game where they should try to give a
graph that their classmates cannot complete to a Eulerian
graph.

Building on this, we could either pursue different di-
rections, or bring this sequence to an end. Possible con-
tinuations are, for example, proofs for various graph
properties, shortest-path algorithms, or (weighted)
matchings in graphs.

3.3 Conceptual Design

We want to highlight some considerations of ours that led
to this example.

The first modeling phase could be done using a copy of
a map and a pen, but by using the computer, we coerce
the students to create a model of streets instead of just
another drawing (observe that the map is already a first
model of reality, and the graph is a more abstract one).

We took care to integrate phases where students work
on paper. This transition slows down the lesson deliber-
ately and enables the students to re-think in a different

mode what they are doing.
By enabling the students to do their own checking, we

invite them to be more confident in their own judgments,
and strengthen their argumentation skills. The subliminal
hints are used for proper internal differentiation, where
students get as much help as they need to advance, but
not too much to stop thinking.

The whole material is modularized and customizable. It
is easy to split up into several parts and to adapt and
adopt it for the individual curriculum.

The graph algorithm used here is not explicitly given.
In this activity we do not want to teach the algorithm per
se, but rather general competencies: modeling, problem
solving, mathematical thinking, etc. Still, we make the
algorithm available, and exhibit its step-by-step behavior,
so that students can use the algorithmic structure for their
own conjectures and structural observations.

4 Design of Interactive Teaching Material for
Discrete Mathematics and Graph Algorithms

The example of Sec. 3 suggests that a computer is par-
ticularly suited for work with graph algorithms. Our
classroom experience confirms this. However, this single
example can only be a starting point for a comprehensive
suite of electronic activities. As there is no fixed syllabus
for graph algorithms or, more generally, discrete mathe-
matics, any offering has to be flexible enough to support
different styles of teaching and learning, and must adapt
to the specific content chosen.

For our explorations, we decided to make algorithms
and algorithmic thinking the central theme. All algo-
rithms that are adequate for school use should be included

Fig. 2: The open learning environment for drawing and testing graphs. On the left hand side we see a 5-
vertex graph drawn by the student. The coloring of vertices is done automatically (see text). On the lower
right there are buttons for selecting a start vertex and starting the algorithm that finds Eulerian tours.
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– at least depth-first and breadth-first search, shortest path
algorithms like Dijkstra’s algorithm or Bellman-Ford,
minimum-spanning-tree algorithms, network flow algo-
rithms, and (bipartite) matchings.

A quick inquiry on the Internet shows a wealth of im-
plementations of demonstrations of these algorithms. But
our hands-on approach requires that the algorithms can be
used by the students; even more, students should be able
to interact with the algorithm, influence how they run,
change the input, get additional visual hints about the
state of the algorithm, etc. For example, they should see
the backtracking that occurs in a depth first search, move
vertices to see that a graph removes geometric informa-
tion, or add and remove edges to understand the different
behavior of the algorithm.

We want to mention some prior packages that are
meant to fill this gap. LEDA9, written in C++, originally
developed by Mehlhorn and Näher, provides extremely
efficient and exact implementations of graph algorithms
and many more. Since it has graduated from a university
project to a commercial product, it is no longer affordable
for school use, unfortunately. The software as such is
very good, but as it is non-trivial to create LEDA-based
software, we cannot expect anyone to create educational
content with it.

Gato10 is an open-source solution written in Python that
is also used as a basis for CATbox by Schliep and
Hochstättler  (2002). Unfortunately, it is rather difficult to
extend the package, and the visualizations suffer from the
windowing toolkit that is used. Both LEDA and Gato
have in common that it is not easily possible to create

                                                            
9 http://www.algorithmic-solutions.com/enleda.htm
10 http://gato.sf.net

small web-based examples that can be combined into a
self-contained activity.

A package that tried to solve this problem is EVEGA11

by Holzapfel and Khuri (2001). This package is written in
Java, so it could be used on the web, but this is not im-
plemented. Also, it only offers three algorithms (BFS,
DFS and MaxFlow), and thus it is not much better than a
single-purpose visualization.

A sophisticated, and continuously developed, software
is GraphBench12 by Markus Brändle. It is written in Java
and visualizes graph algorithms. However, it has some
shortcomings. One thing that impedes understanding is
that supplemental data structures such as stacks are not
consistently visualized. For another thing, input and ma-
nipulation of graphs is unintuitive and error-prone; it is
clear that this is not the main focus of the tool. The pre-
installed algorithms are mostly too advanced for school
use (e.g., Clique, Vertex Cover).

The tool comes with an embedded programming inter-
face. However, the programming interface is too narrow,
there are no data structures to use. Neither is it possible to
have algorithm-specific annotations such as weight on
edges or vertices. Also, the choice of Java as a language
implies that the user must have a complete Java develop-
ment kit installed.

By analyzing the existing tools we came to the conclu-
sion that from a user’s point of view it is important to
support an intuitive, powerful, flexible and well-known
user interface. We decided that it is a good start to extend
existing geometry software that is used in mathematics
education. This will also reduce the initial skepticism of

                                                            
11 http://www14.in.tum.de/EVEGA
12 http://www.inf.ethz.ch/personal/braendle/graphbench/

Fig. 3: The electronic work sheet for “optimization”. The German instructions are: Is it possible to extend
this graph to make it possible to draw it without lifting the pen? Is this always possible (for any graph)?
Or are there graphs that do not permit it?
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teachers and make it easier to introduce the software to
the students. Even if we offer several modules, then each
of them will be similar to the others and the other soft-
ware used in the class, so the use of technology will not
add too much overhead. As graphs are often embedded
into the plane, they can be understood as geometric ob-
jects. It is a natural decision to take existing geometry
software13 and add algorithmic capabilities to it.

The resulting package consists of an authoring tool
which can be used for creating web pages that contain
electronic activities as seen in Sec. 3, and a collection of
ready-made exercises, examples and demonstrations.
Teachers can either use the material as-is, recombine it in
order to adapt it to their teaching, or change it or create
missing parts using the authoring tool. While we are
aware of the fact that most teachers neither have time nor
capabilities to create much material on their own, we
consider it an important feature for the material to be
customizable.

The algorithms are built-in (including all of the algo-
rithms mentioned above), and currently it is not possible
to write new ones (except for the authors of this article).
We will discuss this in the next section. We offer visuali-
zations of the graphs and their states, as well as visuali-
zations of elementary data structures such as stacks and
queues that are used by the algorithms.

The timing of the algorithm visualization is flexible. It
is often useful to stop only at certain lines, e.g., the be-
ginning of a loop. Students, who tend to be bored after
seeing the same loop execution over and over again, ap-
preciate that the speed adapts to their knowledge.

All of the examples are designed to connect to the real
world. In (Faltin 2002) a student testing the algorithm
visualization tool SALA asks for a realistic example of
Heaps. Faltin acknowledges this as a valid request, which
can be fulfilled with a Dijkstra algorithm demonstrating
the use of a priority queue, but also turns it down as being
too advanced for the purpose of SALA. With Visage, we
try to address this. For the prototype package, for exam-
ple, we included shortest-path algorithms, and we also
took care to apply them to real-life problems like subway
travel routes in Berlin.

5 Lessons learned so far

We already had a chance to evaluate a first prototype of
our software and material in the classroom. Of course,
this is by no means a serious empirical evaluation, but
only a first test for being on the right track.

The tests using material about the shortest path problem
were conducted in a computer science course (first year
of secondary level) in a Gymnasium, the Berlin Kolleg.14

This school in Berlin is an adult’s education institute; the
students already have some professional experience and
are older than the usual students in that grade. All stu-
dents were given a CD containing the Visage software

                                                            
13 We used Cinderella, see http://cinderella.de, as it is being

developed in our group as well
14 http://www.berlin-kolleg.de

and HTML pages containing many examples.
Unfortunately, the course was optional for most of

them, and many of the students appeared irregularly. Still,
we did personal interviews with each of them, in order to
gain insight about technical, didactical and other prob-
lems and benefits.

Here, we want to highlight some of the responses that
will guide the further development of Visage.

Overall, those students that used the material gave
positive feedback. At least subjectively, the additional
possibilities that arise from using a computer facilitate the
understanding of the concepts. Being able to quickly cre-
ate and change a test example is one such motivational
and useful ability.

For most of the students computers are recognized as a
tool for gaming, a device for investigations using the In-
ternet, and word processing only. In school they only
expect the two latter activities. Asked for possible usages
of the computer in school, they find these two applica-
tions, and they cannot think of anything beyond them. In
other words: Computers are input/output devices for data.
The computational (sic!) capabilities of computers do not
seem to be of any importance in the view of the students.
This is a clear evidence for the need of algorithmic train-
ing in mathematics.

Many students are not motivated sufficiently by the use
of computers in a teaching unit alone. One reason may be
the unexpected kind of use. Therefore, the teacher has to
present the subject matter. In this case, the lessons were
interesting and enjoyable for the students in our evalua-
tion. Only after being asked to work with the computer in
front of the class they concluded "Hey, this is fun!” In the
interviews, many students indicated that the usage of
computer and projector in the classroom made sense.

For this reason, the handout material was not developed
to be completely self-explanatory. We did include short
summarizing reminders to allow students to use the mate-
rial at home. It should be noted, however, that the techni-
cal problems that made use on the school's computers
problematic, are common on home computers as well.

Currently, students develop their algorithms on paper.
The actual simulation running on the computer has noth-
ing to do with their own handiwork. Therefore, they can-
not see the success of their own algorithms on the com-
puter. That is not satisfactory and was also marked as a
deficit by one student. We intend to close this gap by em-
bedding an interpreter into our tool that allows users to
program their own graph algorithms easily. The existing
interfaces of the underlying DGS to Jython can be used.

6 Future Directions

With the current state, we are close to a viable solution
for using a computer for teaching graph algorithms and
combinatorial optimization. All standard graph algo-
rithms are available immediately. They can be tried out
and their properties can be discovered interactively.
Strengths of the computer are both its ability to speed up
processes that otherwise require too much time, and its
superior visualization in comparison to hand-drawn ex-
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amples.
Our next step is to disseminate the material and im-

prove it based on the feedback we get. The major goal is
to make the whole package easily usable by other teach-
ers. It should become flexible and stable enough for
widespread use.

It will be of special importance to encourage teachers
to recombine the existing parts. This requires that they
have both the technical and mathematical knowledge
about the subject. At least in Germany, many teachers
never got a proper education in graph theory, or they did
not use it in teaching during the last years and forgot what
they learned. We hope to change this situation by pro-
viding the means to use the computer sensibly. To ensure
and sustain our approach we will offer teacher training on
the mathematics, the software, and the educational con-
cepts behind both.
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