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Abstract 

This paper aims at laying down the multidisciplinary fundaments of the geogebraTUTOR 
system (GGBT), a research and technological realisation project developed in didactics of 
mathematics (mathematics education) jointly with informatics computer science. In its 
design, GGBT presents as an intelligent tutorial system, which supports the student in the 
solving of complex problems by assuring the management of discursive messages as well 
as the management of problems. By situating the learning model upstream and the 
diagnostic model downstream, GGBT proposes to act on the development of 
mathematical competencies by offering a control of the acquiring of knowledge in the 
interaction between the student and the milieu, which allows for the adaptation of the 
instructional model (learning opportunities) according to the instrumented actions of the 
student. The notions of inferential and construction graph, which reveals themselves as a 
structured bridge (interface) between the very contextualised world of didactical 
contracts and the formal computer science models, structures GGBT in a way to allow the 
tutorial action to adjust itself to the competential habits conveyed by a certain classroom 
of students and to be enriched by the research results in mathematical education. 

Keywords 

Mathematical education (didactics of mathematics) • Intelligent tutorial system • 
Mathematical competencies • Computer science models (informatics) • Geometry 
learning 

1 Preliminary Point of View on the Tutorial Systems for the 
Learning of Geometry 

Geometry at a High school level can be seen as a deductive science allowing the solving 
of problems in the mathematical field as well as a theoretical reference, which orients the 
wider process of extra mathematical modelling, this permitting amongst other things the 
laying down of problems inspired by what is referred to as the real world or reality. Even 
if the solving of modelling or proof problems presents, along side of the curricular 
obligations, as a mathematical competence to prioritize in the education of young people, 
it remains difficult to develop in regards of the traditional relationship between the 
teacher who, alone in front of his class, looks to give insight into the mathematical 
reasoning, calculations and other problems to which are confronted students. Also, when 
it’s the instrumental workings of the dynamic geometry tools that liven up his didactic 
interventions, the teacher may feel at loss when faced with the flow of interactions 
between each student and the computer device, and this in spite of the fact that these 
interactions constitute a source of insight into the evolution and progression of 
mathematical competencies and knowledge. 

The idea of a tutorial system accompanying the student in the solving of problems and 
thus completing the work of the teacher is undoubtedly not new. Amongst the recent 
technological realisations that relate best to geogebraTUTOR (Richard & al., 2007), more 
precisely to the current notion of our tutorial system, proper to mention to begin with the 
Advanced Geometry Tutor (Matsuda & Vanlehn, 2005), the Baghera project (Laboratoire 
Leibniz, 2003), the Cabri-Euclide microworld (Luengo, 2005) and the Geometry 
Explanation Tutor (Aleven & al., 2002). All these systems essentially establish themselves 
accordingly to formal geometry models that, in spite of clear IT programming 
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advantages, imply supporting an axiomatic approach for the student’s development of 
geometric competencies. There is also the Andes Physics Tutor (Vanlehn et al. 2005). 
Although this system is dedicated to the teaching of physics, it proposes to the student 
different means of analytical modelling (translation into equation or function) in the 
context of problem situations, some of which are pre modelled in geometry. However, 
isn’t dynamic geometry a kind of «first physics» which preserves the construction’s logic 
(balance of the forces) in movement or in the exploration of particular cases? Finally, 
there is AgentGeom (Cobo & al., 2007) and Turing (Richard & al., 2007), systems anterior 
to geogebraTUTOR (GGBT). Contrarily to previous systems, these devices are essentially 
based on cognitive geometry models, AgentGeom’s tutorial action occuring mostly 
during the geometrical shape construction and AgentGeom’s occurs while the solving of 
a problem takes place. 

2 Research Problem of GeogebraTUTOR: Student-Milieu 
Interactions and IT Questions 

Stemming from a multidisciplinary project between didactics of mathematics and 
computer science, GGBT defines itself as an Intelligent Tutorial System (ITS) that 
supports the student in the solving of complex problems1 by assuring the management of 
the discursive messages as well as the management of the problems. In regards to the 
conception, our ITS poses a simulated didactic relationship in which the tutorial agent 
plays, in spite of an individualised personality according to the Iterative Learner’s Model 
(ILM), a teacher’s role which is complementary to the one of the regular teacher. This 
means, from the point of view of the theory of didactical situations in mathematics by 
Brousseau (1998), that the main act of the teacher (relationship 1 and 2 in Diagram 1) is 
transposed into the «student-milieu» system (relationship 6 and 7, ibidem). 
Consequently, the notion of milieu needs a new distinction: the «didactic milieu» is 
antagonistic to the taught system (original definition of the author), in which the tutor 
agent appears as a sub-system, and the «virtual milieu», which competes with the 
student with whom it negotiates, thus establishing, conjointly, the main act of the tutor 
agent (relationship 6 on 7). 

                                                             

1 By complex problems we mean the existence of many solving processes (heuristic requirement), the 
mobilization of a network of mathematical concepts and processes (cognitive requirement), the 
existence of an argumentative approach, of a multi-stage reasoning or non-routine calculations 
(discursive requirements) and the development of groups of competencies that go beyond simple 
reproduction (competential requirement). 
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Diagram 1. Situational map. 

Regarding the functioning of the system, the student constructs shapes, writes discursive 
propositions or calls upon mathematical properties in the solving of a root problem 
situation. The tutor agent returns to the student a discursive message based on his 
significant actions and, when the student stalls, may propose a related sub-problem to 
boost the initial solving process. We name the sub-problems cognitive messages, by 
analogy to the approach of Carnegie Learning’s Cognitive Tutor2. However, in opposition 
to the approach by sub-problems equivalent to parts of the root problem, our cognitive 
messages are related to it thematically according to Neighbourhood criteria and 
anticipated difficulty levels. If the management of the discursive messages raises the IT 
issue of the recognition of the student’s reasoning process from his significant actions, the 
management of the cognitive messages raises the IT issue of the conceptual or 
procedural, heuristical, semiotic or metamathematical changes during the solving process 
(rupture point). Finally, the management of the problems raises the IT issue of the 
recognition of the similarity between problems while avoiding, by means of all the 
messages, to give at the same time answers that modify considerably the stakes in the 
devolution of the root problem. 

3 Research and Development Approach 

3.1 Merger of two Paradigms from the Point of View of Didactics 
Epistemology 

The implementation of geogebraTUTOR is part of a research and developments project 
that begun with the AgentGeom and Turing projects: it borrows its conceptual melting 
pot and its methodological approach. In other terms, the learning models we claim to 
draw with the usage of our ITS are essentially based on the Theory of Didactical 
Situations in Mathematics (TDS), the Duval’s Theory of Language Functions (TLF) and 
the Instrumentation Theory by Rabardel (IT), while conjugating The Grounded Theory 
Analysis by Glaser and Strauss (GTA) and the Didactics Engineering by Artigue (DE) as 
source methods. Therefore, with our prior projects, we verified the extension of the TDS 

                                                             

2 See <http://www.carnegielearning.com>. 
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+ TLF + IT theoretical framework when these theories are applied to an ITS for the 
learning of geometry at a high school level. However, the hypothetical-deductive 
paradigm, which had then allowed us to validate separately our research hypotheses 
with regard to confined situations has revealed itself to be insufficient in a perspective of 
integration AgentGeom + Turing, which allows the dynamic evolution of the student-
milieu interactions. That is why the emergence of learning models adapted to the usage 
of GGBT requires to add a comparative-inductive paradigm to our current approach, a 
paradigm we propose on the basis of an GTA + DE integration. 

Without going into the details of the methodological integration, it’s suitable to stress the 
fact that our approach differs from regular experimental methods, in the field of science 
of education, by its validation mode. Accordingly to the method favoured by the DE, this 
validation mode is internal and is based on the comparison between an a priori analysis, 
which relies on certain hypotheses, and an a posteriori analysis of the visible and 
significant student-milieu interactions. In other words, there are no control groups or 
comparison between students using GGBT or non-users. In addition, these interactions 
consider the integration of implicit models, among which the mathematical models 
implemented in the IT device, like those that underline the interface or the computations, 
added to the implicit key aspects of the instructional design or of specific didactical 
contracts (in regards of relationships 1 and 6 of Diagram 1). Finally, this validation mode 
is compatible with the idea of technological transfer into research in the fields of didactics 
of mathematics and ITS development, since it allows the consideration of student 
behaviours observed during the use of GGBT, not only for the sake of the student but 
also in order to progressively improve the intelligent tutor, so endowing the system of an 
intelligence resulting form the convergence of successive a priori and a posteriori 
analyses. 

3.2 Student’s Interface and the System’s Structure 

From a computer science point of view, it is important to propose to the user an interface 
paradigm with which he is familiar to facilitate the instrumental genesis or to mechanize, 
in a certain way, the schemes of use (in the sense of Rabardel, 1995). The interface we 
propose to the student is composed of three distinct areas (Illustration 2). At the top of 
the window, under the contextual menus, can be found the problem statement to which 
we can link a drawing. These elements are continuously shown and can’t be modified by 
the student. In the middle, the interface of GeoGebra (GGB), without modifications, is 
found. Besides the known potential of this dynamic geometry software, are integrated 
advanced Computer Algebra System (CAS) functionalities. Although only a pre-version 
of these is currently available, it will be possible for the student and the student to use 
them for the solving of certain designated problems. The GGB interface can propose an 
initial shape, matching or differing from the drawing linked to the problem statement, on 
which the student is susceptible of launching his work (construction, movement, etc.). It 
is also possible to use the input field to enter commands. The tutor agent follows closely 
every action of the student in the GGB window and tries to identify what seems to be the 
student’s solving strategy, which then allows the system to assist or advise the student. 
Finally, under the GGB module, we exploit the paradigm of a chat window to simulate a 
dialogue between the student and the ITS. This one is disposed to respond to the 
student’s actions by a message that appears at the bottom of the window. The actions can 
be discursive (lower module), graphic or symbolic (GGB module), while the messages of 
the tutor agent can be discursive (propositions in the lower module) or cognitive 
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(hyperlink towards a sub-problem, see paragraph Identity Cards and Neighbourhood of the 
Problem). Like in regular chat systems, the student (and the system) has access to previous 
messages. 

 

Illustration 2. Student’s interface. 

Diagram 3 illustrates the internal part of the system. Our ITS is composed of two main 
subsystems containing six elements each: the GGBT on the left and the tutor agent on the 
right. This partition aims at granting independence from the student’s interface to our 
tutor agent, to facilitate, among other things, the test and integration of the tutor with the 
different systems. Ultimately, the tutor could run on a server and exchange, through a 
network, messages with the interface or even, for validation purposes, be momentarily 
replaced by a human tutor. However, for the moment, the system is a standalone Java 
application, which requires no network besides for the downloading of the application. 

The GGBT subsystem essentially contains the modules that are related to the user’s 
interface. The GGBT and GGB modules contain the code for the interface. The GGB 
module supports a computer algebra system (CAS) and an Automatic Deduction system 
(AD) that can be used by the ITS to execute some verifications on the student’s input. 
Furthermore, this module generates an event log, which can possibly be analysed for the 
interpretation of the student-milieu interactions. To this are added the graphic and 
discursive analysis, which allow the transformation of raw actions at the interface into 
significant actions for the system. In other words, the tutor can treat the student’s input 
as HPDIC messages (acronym of Hypotheses, Propositions, Definitions, Intermediate 
results and Conclusions). The valid messages for the tutor are stored in the HPDIC 
database. 
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Diagram 3. System’s structure. 

Once the processing of the student’s actions is over, a HPDIC message is sent to the tutor 
subsystem. The tutor is a multi-agent module that aspires to help the student throughout 
the resolution, from problem solving to composition, i.e. the writing of a solution (see 
Diagram 4). If the tutor receives a graphic message, it asks for help from the «graphic 
tutor» module and it can returns a message to the student’s interface. The graphic tutor 
essentially uses the AgentGeom approach. In the case where the student writes an 
equation, the «algebra tutor» module is called. This last one is still at its conception phase 
since it depends on the recent development of the GGB CAS module. When the student 
enters a discursive proposition at the interface of GGBT, we consider that he is explicitly 
trying to produce an inference in order to generate a proof. When this occurs, the 
«deduction tutor» is required. Based on the Turing approach, this tutor contains the 
inferential graph as well as a bank of discursive messages that could be used to assist the 
student. The output of the discursive messages is based on the ILM, which is defined as 
an emergent support model, characteristic of GGBT, which creates the illusion that a 
communication is taking place with the student (see section Intelligence of the System and 
Iterative Learner’s Model). Finally, the tutor agent can reach a state in which the message 
addresses different aspects of the problem, where help from more than one tutor at a time 
is necessary (intersection of AgentGeom and Turing in Diagram 4). This way, one 
construction step may require interpretation by the graphic and deductive tutors, when 
this step refers to a deduction defined in the inferential graph, for example. In this case, 
the tutor must decide what message is more useful to the student. 
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Diagram 4. GGBT’s rendering with regards to the steps of the student. 

3.3 Reasoning, Graphs and Inferences 

Even if we suppose that in their schooling students must one day adhere to pre-existent 
mathematics (an expert mathematical model), the stakes related to the development of 
their mathematical competencies result in a progressive learning and mostly very 
contextualised. In other words, the particularity of the didactical contract in which the 
students evolve or even the specificity of each problem situation seem to make difficult 
the practice within an expert model. One of the reasons that lead us to the idea of 
cognitive geometry lies in our commitment to introduce these contextual aspects into the 
development of our ITS. Since cognitive geometry can be locally coherent without 
necessarily being globally coherent – contrarily to formal geometry –, we adopted a 
structural approach to reasoning, which not only combines these aspects of geometry, but 
first and foremost allows the IT programming. 

Inspired at first of Duval (1995) and Richard’s (2004a) works, the concept of inference 
expressed by dialogue, figural representations and instrumented action, considered as a 
voluntary reasoning step, intervenes at the heart of our system. Each inference respects 
an «antecedent  consequent» structure with a justification that «controls» the reasoning 
step, allowing it or participating in it in order to allow the student to produce a sequence 
of inferences that remain coherent according to the logic of the problem or significant in 
its context. The question of significance that is here introduced doesn’t aim only at 
satisfying the possibilities of cognitive geometry (ex: acceptance of certain discursive 
inferences, in the sense of Duval (1995), or of inferential shortcuts depending on the 
habits of a didactical contract), but also to deal with the inductive nature of inferences 
allowed by the practice of dynamic geometry or by the modelling activity. To illustrate 
our idea, we introduce three types of inferences in the Table 5. 

Table 5. Characterisation of the inference types treated by geogebraTUTOR in regards to 
the control of the justification in the interactions student-milieu, the taking charge of the 



9 

inferences by the system and the discursive-graphic effect of these on the student’s 
reasoning. 

Typical inference 
Control of the 

justification 
Taking charge by 

the ITS 
Discursive-

graphic effect 

Since « (PM) (OA) » by 
hypothesis, so, according 
to «the Thales’ Theorem», 

«

PM

4

=
3 - OM

3 ». 

Managed by the 
student 

Comparison with 
the inferential 
graph 

Transformation of 
states recognised 
by the student, 
the consequent is 
obtained by 
deduction 
(cognitive or 
formal) 

Confrontation between a 
satisfying configuration 
and a non-satisfying 
configuration by 
dynamism of the shape or 
by construction of it, 
letting emerge «maximum 
area is obtained when P is 
the middle of [AB]». 

Shared 
management by 
the instantaneous 
actions-feedbacks 

Comparison to 
the collection of 
construction 
graph and to the 
inferential 
graphs related to 
the presumed 
model 

Transformation of 
significant actions 
into a state by 
induction, the 
consequent is 
obtained by 
interpretation of 
the satisfying 
configuration 
(figural inference) 

Since  

«
PMNO = 4 !OM "

4 !OM
2

3 », 
so, according to 

«
fMax 4 ! x "

4 ! x
2

3
, x

#

$%
&

'( », 
«the maximum area is 

obtained when 
OM =

3

2 ». 

Chosen by the 
student but 
essentially 
managed by the 
milieu 

Use of the CAS 
or of the 
GeoGebra oracle, 
formal 
comparison of 
symbolic 
expressions 

Transformation of 
states by CAS 
function or oracle, 
the consequent is 
produced by the 
system or chosen 
by the student 
according to a list 
of possibilities 
(«fill the blank» 
expressions) 

At first, for each problem situation, we associate construction graphs (reference shapes) 
and for each construction graph, an inferential graph. Each construction constitutes a 
modelling of the problem, which summarises the figural result of a satisfying 
configuration. These configurations are a result of the basic space of the problem (Cobo & 
Fortuny, 2000), meaning they origin from the gathering of the solving strategies that can 
be collected in a given classroom by a teacher or an expert. This way, with the 
AgentGeom approach, we can compare the student's actions to the collection of satisfying 
configurations in order to anticipate the model in which the student seems to be 
evolving. Then, for each satisfying configuration, the correspondent inferential graph 
must be formed. This graph, inspired of the Turing approach, reveals the different proof 
strategies that follow from the reading of a satisfying configuration in the shape of a 
series of well-structured inferences from discursive, symbolic and figural propositions (in 
the sense of Richard, 2004b). 
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Figure 6. Inferential graph AND/OR. 

3.4 Intelligence of the System and Iterative Learner’s Model 

For the IT system to be able to state the student's stage of advancement in his solution, we 
have coded the inferential graphs as seen at Figure 6. In these graphs, the nodes P and D3 
are inference justifications, while the nodes prior to them (H or I) or posterior (I or C) are 
respectively antecedents or consequents of the justifications, the I node playing a double 
role depending on the considered justification. From a logical point of view, the entrances 
of each justification node are conjunctions, while all the other links are disjunctions. This 
means that all the antecedents and a justification are needed to legitimise a consequent. 
However, there may be many paths to legitimise a consequent, but only one is necessary 
to complete a proof, which can be considered complete when we obtain a path joining the 
hypotheses to the conclusion and when all antecedents of the justifications that appears 
in the path have been activated by the student's actions. 

When the student tries to solve a problem, he activates different nodes in the inferential 
graph. Nevertheless, since the nodes will generally not be activated in a purely 
descendent or ascendant order, as is presumed in the Matsuda & VanLehn (2003) 
approach, the ILM supports the student by using the historic of his significant actions, 
respecting the heuristic aspects of his solving method. Theoretically, the system tries to 
develop a path around the last action of the student, but if he happens to be stuck, the 
ILM is lead to relaunch the solving process according to a previous significant action. 
Consequently, our objective is not to force the student into a deterministic mould, but 
rather to incite him to follow his intuition or his solution until he obtains a complete 
solution that can be structured in the logic of the problem. 

                                                             

3 The distinction between P and D is on the status of the node (property versus definition) and not 
of their function in the inference. In fact, the definitions are always logical equivalences, while the 
properties are implications whose reciprocal logic is not necessarily true. 
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3.5 Identity Cards and Neighbourhood of the Problems 

As in an ordinary class, the organization of the problems is an important question for the 
development of mathematical competencies. In the classic contract, the teacher gives to 
the whole class the same group of problems to solve, these generally growing 
increasingly difficult. However, the stakes of the problems undergo little adaptation 
according to the evolution of the competencies of each student and even less to their 
instrumented behaviour. In the section addressing the problematic of GGBT, we 
introduced the notion of cognitive message; we also evoked the question of 
neighbourhood of the problems. Really, the criteria for neighbourhood is based on a 
prerequisite characterization of each problem, which we call identity card, from the 
categories «processes and concepts», «heuristics», «semiotic» or «metamathematical». 
Without going into details, we can stress that each category develops according to the 
shapes or values made possible by the realization of a given didactical contract. Two 
problems are then neighbours if they share a same subset of values. The information 
supplied by the identity cards, according to the instrumented behaviours of the students, 
is susceptible to lead to learning itineraries adapted to the whole class. 

The identity cards constitute a global description of the problem. But, when a student is 
stuck, it's usually because he's stumbled on a particular difficulty. In order to identify this 
difficulty, we can compare the student's effective method to the information, which, 
combined to the ILM, can be found in the inferential graphs. So, by identifying the steps 
the student is unable to deduce, we can suppose that the difficulty lies in part in the 
knowledge he should have used. A second criterion consists in comparing the graphs of 
chosen sub-problems to keep only the one that sticks the best with the presumed 
difficulty. Consequently, we consider it to be advantageous to address the issue of the 
neighbourhood of the problems, complementing the other issues: the reasoning, the 
graphs and the ILM. 

3.6 Learning Models and Diagnostic Model 

In spite of any promise of a diagnostic of instrumented behaviour, the tutor agent claims 
to act on mathematical conceptions, which reveal themselves locally by the student-
milieu interactions. In reference to the knowledge model of Balacheff and Margolinas 
(2005), the action of this agent relies on the problems, the solving operators, the 
representation systems, as well as the control structures, these being the four components 
of a conception. However, the development of mathematical competencies is a longterm 
project. If our system undoubtedly influences their evolution, it is not so much because of 
the tutor’s interventions, but mostly due to the choice of problems, which are the 
elements that globally create learning opportunities. This point of view leads us to 
consider that the learning model that ensues of the use of GGBT is bigger than its 
diagnostic model, this last one relying first on the student's conceptions. In other words, 
our system proposes to act on the development of mathematical competencies by offering 
a control on the acquisition of knowledge and an adaptation of the instructional model 
(learning opportunities) according to the student's instrumented behaviour.  
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4 Conclusion 

Even if the backcloth of our ITS obviously is weaved around human learning and that we 
try to create a space of dialogue in the student-milieu exchanges, the discourse of the 
tutor agent overlaps with the discourse of the student without there being any real 
communication. Nevertheless, as a wink to Vigotsky, our research and development 
approach assures the existence of a zone of proximal development, in spite of the 
character essentially reactive of a tutor agent, which surfs graphs built a priori. If certain 
IT issues remain unanswered, like the ones evoked in the section Problematic of 
GeogebraTUTOR, we have to mention that the complexity of our approach forced us to 
defer the analysis, by the system, of the sentences written in natural language. For the 
moment, we work mostly on the other discursive aspects of the system and on the 
Iterative Learner’s Model, as well as on the link between these and figural modelling. The 
integration of a computer algebra system, which depends on the current development of 
the GeoGebraCAS, and the organization of the cognitive messages are not in our 
priorities. However, the enrichment of the graphs by instrumented solving with real 
students is in progress. 

Acknowledgements 

The development of the research is made possible by a grant from the Conseil de 
recherches en sciences humaines (CRSH 410-2009-0179, Gouvernement du Canada) and a 
grant of the program Ramón y Cajal (RYC-2009-04014, Gobierno de España). 

References 

Aleven, V., Popescu, O., & Koedinger, K. R. (2002). Towards tutorial dialog to support self-
explanation : Adding natural language understanding to a cognitive tutor. In J. D. Moore, C. 
Redfield, & W. L. Johnson (Eds.), Artificial Intelligence in Education : AI-ED in the Wired and 
Wireless Future (pp. 246-255). Amsterdam: IOS Press. 

Artigue, M. (1990). Ingénierie didactique. Recherche en didactique des mathématiques, 9(3), 281-308. 

Balacheff, N., & Margolinas, C. (2005). Ck¢, modèle de connaissances pour le calcul de situations 
didactiques. In A. Mercier, & C. Margolinas (Eds.), Balises pour la didactique des mathématiques 
(pp. 75-106). Grenoble: La Pensée Sauvage. 

Brousseau, G. (1998). Théorie des situations didactiques. Grenoble: La Pensée Sauvage. 

Cobo, P., & Fortuny, J. (2000). Social interactions and cognitive effects in contexts of area-
comparison problem solving. Educational Studies in Mathematics, 42(2), 115-140. 

Cobo, P., Fortuny, J., Puertas, E., & Richard, P. (2007). Agentgeom: A multiagent system for 
pedagogical support in geometric proof problems. International Journal of Computers for 
Mathematical Learning, 12(1), 57-79. 

Duval, R. (1995). Sémiosis et pensée humaine : Registres sémiotiques et apprentissages intellectuels. Berne: 
Peter Lang. 



13 

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. 
Hawthorne: Aldine de Gruyter. 

Laboratoire Leibniz (2003). Baghera assessment project : Designing an hybrid and emergent 
educational society. In S. Soury-Lavergne (Ed.), Rapport pour la commission européenne, 
Programme IST, Les Cahiers du Laboratoire Leibniz nº 81. Grenoble. 

Luengo, V. (2005). Some didactical and epistemological considerations in the design of educational 
software: The cabri-euclide example. International Journal of Computers for Mathematical 
Learning, 10(1), 1-29. 

Matsuda, N., & VanLehn, K. (2003). Modeling hinting strategies for geometry theorem proving. In 
P. Brusilovsky, A. Corbett, & F. de Rosis (Eds.), User modeling 2003 (pp. 373-377). Johnstown : 
Springer. 

Matsuda, N., & VanLehn, K. (2005). Advanced geometry tutor: An intelligent tutor that teaches 
proof-writing with construction. In C.-K. Looi, G. McCalla, B. Bredeweg, & J. Breuker (Eds.), 
The 12th International Conference on Artificial Intelligence in Education (pp. 443-450). 
Amsterdam : IOS Press. 

Rabardel, P. (1995). Les hommes et les technologies: Approche cognitive des instruments contemporains. 
Paris: Armand Colin. 

Richard, P. R. (2004a). Raisonnement et stratégies de preuve dans l'enseignement des mathématiques. 
Berne: Peter Lang. 

Richard, P. (2004b). L'inférence figurale: Un pas de raisonnement discursivo-graphique. Educational 
Studies in Mathematics, 57(2), 229-263. 

Richard, P. R., Fortuny, J. M., Hohenwarter, M., & Gagnon, M. (2007). geogebratutor : Une nouvelle 
approche pour la recherche sur l’apprentissage compétentiel et instrumenté de la géométrie 
à l’école secondaire. In T. Bastiaens, & S. Carliner (Eds.), World Conference on E-Learning in 
Corporate, Government, Healthcare, and Higher Education 2007 (pp. 428-435). Chesapeake: 
AACE. 

Richard, P., & Fortuny, J. (2007). Amélioration des compétences argumentatives à l’aide d’un 
système tutoriel en classe de mathématique au secondaire. Annales de didactique et de sciences 
cognitives, 12, 83-116. 

Vanlehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., et al. (2005). The andes 
physics tutoring system: Lessons learned. Int. J. Artif. Intell. Ed., 15(3), 147-204. 

Figure Legend 

Diagram 1. Situational map. 

Illustration 2. Student’s interface. 

Diagram 3. System’s structure. 

Diagram 4. GGBT’s rendering with regards to the steps of the student. 

Figure 6. Inferential graph AND/OR. 
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Table Title 

Table 5. Characterisation of the inference types treated by geogebraTUTOR in regards to 
the control of the justification in the interactions student-milieu, the taking charge of the 
inferences by the system and the discursive-graphic effect of these on the student’s 
reasoning. 


