
KAT: an Annotation Tool for STEM Documents

Deyan Ginev, Sourabh Lal, Michael Kohlhase, Tom Wiesing

Jacobs University Bremen

Abstract. Contemporary natural language processing (NLP) systems
are based on corpora of annotated documents for training and evalua-
tion. To extend NLP to documents from Science, Technology, Engineer-
ing, and Mathematics (STEM) we need annotation systems that can
deal with structured elements like mathematical formulae, tables, and
possibly even diagrams. Current linguistic annotation systems treat doc-
uments as word sequences and disregard the structure of complex docu-
ment elements, and are therefore unsuited for STEM annotation as this
very structure carries important syntactic and semantic information.
We present the KAT system, a browser-based annotation tool for lin-
guistic/semantic annotations in structured (XHTML5, i.e. HTML +
MathML + SVG in XML serialization) documents. As KAT is para-
metric in the annotation ontology and represents annotations as RDF,
it can easily be integrated into RDF-based corpus management systems;
we present an integration into the CorTeX system.

1 Introduction

Natural language processing systems need a “gold standard” – a corpus
of annotated documents – for training and evaluation. Gold standards
are created by manually annotating a corpus (often a subcorpus of an
existing larger one). Annotations are metadata about a document, and
do not actually alter the content of the document. They can be thought of
as a layer on top of a document which contains information about the text
in the document. Managing the annotations in a document or a corpus
requires an annotation tool. There are many other use cases for annotating
documents (see [San] for a collection), we will concentrate on the maths
linguistic use case here. Conventional linguistic annotations might consist
of “part of speech (POS) tags” (syntactic annotations) or crossrefs from
words into wikipedia (for semantic dismbiguation/grounding). Corpora
are usually annotated my multiple annotators and are evaluated for inter-
annotator agreement.

1.1 Document Annotation Tools

Currently there are several annotations tools available to use for online
text annotations including Hypothes.is [HYP], brat [BR], Yawas [YW]

1

and Annotatie [AN]. Annotation tools can be categorized according to
the type of annotations they make. Generally state of the art annotation
tools create one of the following types of annotations:
1. Dynamic Annotations - Annotations that are anchored to the text of

the document.
2. Static Annotations - Annotations that are anchored to a particular

position in the page of the document.
For the propose of linguistic annotations of STEM documents only dy-
namic annotations are useful, so we will disregard static annotators like
Annotatie [AN]. For dynamic annotation tools we can distinguish two
classes:
1. web highlighters (also called social bookmarking systems) that aim to

“add a new layer to the web”, in which users can share and discuss
comment on document fragments, and

2. structured annotation tools, which classify text fragments and relate
them to each other according to a fixed or flexible ontology.

We will now briefly present one paradigmatic system from each category:

Hypothes.is Hypothes.is [HYP] is a is is an online, dynamic annota-
tion tool that can highlight and annotate pdfs as well as web pages.
Annotations are free-form comments that can be stored locally or pub-
lished/shared. If hypothes.is is enabled on a PDF or web page, private
and shared annotations can be viewed. Hypothes.is provides annotation
management features such as the ability to make an annotation public or
private, and discussing annotations.

brat The “brat rapid annotation tool” [BR] is a web based structured
annotation tool for text documents. It is designed to create annotations
that have a fixed form that can be automatically processed and inter-
preted. brat can be used to create both regular text span annotations, as
well as relational annotations that connect two regular annotations. brat
provides several annotation management functionalities, e.g.
1. an Advanced annotation searching tool.
2. An annotation export interface that can convert the internal storage

format to PDF or HTML.
3. Unique address to access each annotation.

While they have many important functionalities also needed for our
application, both classes of tools are insufficient for creating linguistic
gold standards for STEM documents. Web highlighters do not support
structured annotations that are needed for syntactic/semantic analysis,
and structured annotation systems are restricted to un-structured text

2

documents – the adjective “structured” only applies to the structure of
annotations.

1.2 Modalities of STEM Documents

For understanding the syntactic/semantic structure of STEM documents,
we need to be able to make use of the complex document structure. We
will point out some of the phenomena a STEM-linguistic annotation tool
(SLAT) needs to annotate to act as a set of requirements.

Formulae STEM documents contain structured formulae whose parts
carry meaning. Examples include mathematical and chemical formulae,
e.g.
1) “For each ε > 0”
2) “. . . , then ε2/7 > δ. . . ”

3) “The OH group in (ethanol). . . ”

We see that the formulae have a role in the syntactic structure of the
sentences, and even though the formulae in 1) and 2) are very similar
syntactically, the first introduces an identifier (ε), whereas the second
one is a proposition. In 3) the formula “OH” contributes to the definite
description that acts as a subject to the sentences and references a part
of the formula displayed later. A SLAT needs to be able to annotate
formula fragments, e.g. the ε as a “declarandum” in the declaration ε > 0
in 1). A necessary precondition for that is that the format for representing
annotations (the annotation format) can reference formula fragments.

Tables, & Diagrams act as visual short forms of or supplementary ele-
ments for explanatory text. Just as in formulae, they have grammatical
roles, and their parts are referenced in the text or elaborated on. For
instance, Figure 1 introduces a KannSpec, which is later defined and ex-
plained in Section 2.2. Assuming that tables and diagrams are given as
structured representations – e.g. as group-structured vector graphics or
in row/column markup, we need a fragment representation format that
can deal with the structural components of tables and diagrams.

Images, Quotes & Listings are visual presentations of external objects
or artefacts employed to help readers better understand document con-
tent. Even though they are usually not themselves structured objects,
they contain regions that form syntactic and semantic structures to the
reader and need to be annotated. For these, a SLAT may have to delegate
annotation to a static annotation tool.

3

1.3 Requirements for Linguistic Annotations for Structured
Documents

A SLAT needs to be able to cope with all the modalities introduced
above. Some of the structures to be annotated will already be explicitly
representable in the document format – and maybe even represented in
the document (an instance of the document format), while some will have
to be identified in the annotation process itself. Both need to be available
as arguments for subsequent annotations.

An ontology is a specification of a set of concepts and their prop-
erties/relations, an annotation ontology is one whose concepts concern
meaning-carrying structures in documents or the structure of the knowl-
edge conveyed in them. Suitable Ontologies range from a part-of-speech
ontology [OLiA] that provides basic syntactic classes to the OMDoc on-
tology that concentrates on semantic structures [Lan11].

As research on the syntactic/semantic structures in STEM documents
are still in a relatively early state, it is too early to fix ontologies, therefore
a SLAT should be parametric in the annotation ontology to be an effective
research tool.

A SLAT should natively support STEM document formats that 1. can
encode all the modalities above in a structured form and 2. that sup-
port fragment identifiers for the structured and unstructured components.
XML-based formats are well-suited, since they have standardized frag-
ment identification languages like XPath [XPa10] and XPointer [Gro+03].
As these can be embedded into URIs, we can directly use RDF [SR14] for
the representation of annotations. RDF has the additional advantage that
the triple-of-URIs representation can directly make use of the concepts
and relation of the annotation ontology, if that is given in RDFS or OWL
format.

For STEM documents, the XHTML5 [Hic+14] format seems like a
good basis: HTML5 augments the HTML document model (which covers
tables, images, quotes, and listings) with MathML [Aus+10] for mathe-
matical formulae and SVG [Dah+11] for diagrams, and XHTML5 is the
XML serialization. As (X)HTML5 is supported by all major browsers
– MathML coverage varies though – we can implement an annotation
tool in the style of web highlighters: as a JavaScript library that can be
embedded into web pages.

In the next section we will present the KAT (KWARC Annotation
Tool) system that is based on these ideas. Section 3 concludes the paper.

4

2 The KAT System Architecture & Implementation

Fig. 1. The KAT System Architecture

KAT is a browser plugin
for XHTML5 (i.e. HTML
+ MathML + SVG in
XML serialization) docu-
ments and generates a set
of RDF triples that repre-
sent the annotations pro-
vided by the user as out-
put. The system is im-
plemented in the form of
a JavaScript library that
expects tokenized1 (sen-
tences and words are marked up in h:span elements for structure)
XHTML5. It can easily be embedded into an existing web-page. As KAT
is based on XHTML5, we can employ the XML tool chain and rely on
standard libraries for the implementation.

The KAT system architecture can be seen in Figure 1. Even though
KAT can work as a standalone library that can be added to any STEM
document in HTML5, it is best used as a component of a corpus man-
agement system, such as the CorTEX system [CT]. In this situation the
user requests an annotation task from CorTEX, which serves the TEI-
tokenized document set from its document store and instruments it with
the KAT library. The user can then annotate the document. As the an-
notation interface is parametric in the annotation ontology KAT needs
an UI specification to specialize the user interaction. This is provided
by the KAnnSpecs that specifiy a UI aspect and reference an annotation
ontology. Once the annotation process is complete, KAT can export anno-
tations in RDF/XMLto the semantic blackboard – an RDF triple store –
maintained by CorTEX as an annotation server for storage, management,
linguistic analysis and content harvesting.

1 While KAT could work with non-tokenized documents it is much easier to work
with documents that are tokenized up to the word level. In this case it is suffi-
cient for KAT to store fragments of the documents that are annotated as a range
of XHTML elements instead of having to go down to the character level (see Sec-
tion 2.1). Furthermore, re-implementing an existing TEI-tagger in JavaScript would
have provided unnecessary effort.

5

2.1 Representing Annotations

Each annotation in the system is bound to a fragment of the XML doc-
ument – a contiguous range. This range can contain any type of content
– text, formulae, tables, diagrams or images for example. Since we are
working with word-tokenized XML documents and words are the smallest
meaning-carrying document fragments, we can use XPaths [XPa10] spec-
ify such ranges instead of XPointer, which also offers ranges in text nodes,
but is much less implemented. Since the range we specify is contiguous, it
is sufficient to give XPaths to the first and last elements to locate it. Be-
cause the KAT system eventually has to find all elements contained in the
selection we additionally give an XPath to the least common ancestor of
both elements. We then combine all these paths with the document URL
to generate a single URI of the form doc#cse(con,start,end) – where
doc is the document url, con the XPath to the container, start and end

the pointers to the first and last element of the selection respectively.

Document

semi-
Euclidean

space
Annotation

kat:annotates

KAnnSpec

ka
t:
ka
nn
sp
ec

Run

kat:run
http://omdoc.org/

KAnnSpec#
Symbol

kat:type

semi-Euclidean space

o:symbolname

Symbol
ka
t:
co
nc
ep
t

Fig. 2. An Annotation Graph

An annotation connects a document fragment with the annotation
content. In Figure 2 we give an example of this. We can see that the text
semi-Eucledian space has an annotation linked to it. In the KAT system
every concept in an ontology has a list of fields that act as properties.
The ontology is specified in the KAnnSpec and the one we are using here
will be explained later in the context of Listing 1.1. The concept Symbol
used here has a single field, given by the o:symbolname relation. The

6

name of the annotation is semi-Eucledian space. In general, fields can be
instantiated multiple times per annotation and some can have additional
constraints.

2.2 KAnnSpecs As Ontology Descriptions

KAT is not tied to a particular annotation ontology (or ontology for-
mat). At startup, the system is reads a set of KAnnSpecs – custom XML
files that describe the annotation interface, the constraints between the
components of an annotation frame, and the RDF to be produced. The
Concept of OMDoc symbols used in Figure 3 specifies i) the fields of the
annotation form, their values and validation constraints, ii) their display,
and iii) RDF attributes required to create RDF triples. Note that this
KAnnSpec classifies the annotated word as an OMDoc symbol (via the
rdf:type predicate) and relates it to its name via the o:symbolname relation
from the OMDoc ontology.

In Listing 1.1 we show part of such a KAnnSpec and define the OMDoc
symbol. First we give this concept a name and a basic description. In
addition, we give it an RDF type. This will be used in RDF export later.
Next, we declare that this concept has a text field name, representing the
name of the symbol to be declared. We give this a basic description and
an RDF predicate o:symbolname which comes from the annotation graph
(Figure 2). Futhermore we give the field a default value and state that its
value is valid if it contains any kind of text. Finally we need to declare
that the field occurs exactly once for each concept.

Listing 1.1. A KAnnSpec concept declaration for an OMDoc Symbol

1 <concept name="Symbol" rdftype="o:Symbol">

2 <documentation>An OpenMath/OMDoc Symbol</documentation>

3 <field name="name" type="text" rdfpred="o:symbolname">

4 <documentation>

5 The name of the symbol defines it in a theory.

6 </documentation>

7 <value>Name</value>

8 <default>Symbol</default>

9 <validation>.*</validation>

10 <number atleast="1" atmost="1"/>

11 </field>

12 <display>

13 <template>Symbol:
 {name}</template>

14 </display>

7

15 </concept>

2.3 Exporting Annotations As RDF

We use the Resource Description Framework [SR14] to export and import
annotations. In particular we use RDF triples – subject/predicate/object
triples – to represent annotations. The subjects are the location of the
annotation, the predicates are defined in the KAnnSpec and the objects
are the field values – either text or the URI to an annotation.

In Listing 1.2 we show a sample of how an annotation is exported
to RDF. Each annotation consists out of a single node (lines 6-12). Ad-
ditionally, each annotation has meta-data, such as the used KAnnSpec,
which is omitted here. To generate this node, we use the properties of the
annotation graph shown above in Figure 2.

We first give the range of the document that is being annotated. We
make use of the kat:annotates relation (line 5). We use the XPath format
as described above – in this case the URI https://kwarc.github.io/

KAT/content/sample1.html#cse(//*[@id=’sentence.11’],//*[@id=’word.

202’],//*[@id=’word.203’])2 with ids word.202 and word.203. Next
we use the concept of a kat:run (line 6). This is intended to provide meta-
information such as when and how this annotation was generated, this
has been omitted from the listing.

Continuing, we give the concept that the annotation uses. We first
reference a KAnnSpec (line 7) and then a concept (line 8). We further
specify the type of the annotation with the kat:type relation (line 9). This
attribute is specified in the KAnnSpec.

Finally, we provide all the fields and their values. In this case, we just
give the concept the name semi-Euclidean space (line 10).

Listing 1.2. Exported RDF generated for a single annotation of an OM-
DOC Symbol

1 <rdf:RDF xmlns:o="http://omdoc.org/KAnnSpec#" xmlns:rdf="

http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:kat="

https://github.com/KWARC/KAT/">

2 <!-- omitted a lot of meta-information here -->

3

4 <rdf:Description rdf:nodeID="KAT_1433087821332_4477">

2 Actually, the XPath specification would allow bare name paths – e.g. #word202 here,
but external library we currently use does not support this form.

8

5 <kat:annotates rdf:resource="https://kwarc.github.io/KAT

/content/sample1.html#cse(%2F%2F*%5B%40id%3D’sentence

.11’%5D%2C%2F%2F*%5B%40id%3D’word.202’%5D%2C%2F%2F*%5

B%40id%3D’word.203’%5D)" />

6 <kat:run rdf:nodeID="kat_run"/>

7 <kat:kannspec rdf:nodeID="KAT_1433087757661_OMDoc"/>

8 <kat:concept>Symbol</kat:concept>

9 <kat:type rdf:resource="http://omdoc.org/KAnnSpec#Symbol

" />

10 <o:symbolname>semi-Euclidean space</o:symbolname>

11 </rdf:Description>

12

13 </rdf:RDF>

2.4 Making Annotations Inside The Browser

Because KAT runs inside the browser, the annotation workflow itself is
form-based (see Figure 3). All forms are displayed inside a sidebar that
can be hidden in order to focus on the content. The user interface has two
modes: An annotation mode, in which annotations can be created, edited
and deleted, and a reading mode, which can be used to view existing
annotations. The modes can be switched either via the context menu or
a button in the sidebar.

Fig. 3. Annotating in KAT: Selection and Form-Filling

The annotation process itself is shown in Figure 3. The annotator se-
lects a text range and then uses the context menu to select an annotation
type to create and then fills out a form inside the sidebar with classifica-

9

tions and relations as given by the KAnnSpec. Here we specifically show
the Symbol that has been exported in Listing 1.2.

Once an annotation has been created, it is highlighted in the docu-
ment. If in annotation mode, it can be edited or deleted via the context
menu. This menu can be seen in Figure 4.

Fig. 4. Context Menu Of An Existing Annotation in Annotation Mode

Importing from and exporting to RDF can be achieved via the buttons
in the context menu or the sidebar.

3 Future Work & Conclusion

We have presented the KAT system, an open, parametric, and browser-
based annotation system for STEM documents encoded in XHTML5.
The code base is released under the Gnu Public License and is available
at [KG].

The KAT system has been used for annotating mathematical doc-
uments in a computational linguistics course at Jacobs University. We
used the OMDoc ontology for direct semantic annotations and an exper-
imental ontology for declarations (“for all ε > 0, . . . ” or “f be a smooth
real function”) as a test case. For these cases the system was practically
usable.

While KAT has a fully functional user-interface, there are still some
aspects that can be further improved upon. These range from both new
features to minor tweaks to enhance the user interface. While some of
these ideas can be developed immediately, others require further back-
end development before implementation. The three most pressing ones
are:

10

1. Display the information about an annotation – Once an annotation
is created, currently there is no way to see what details the user has
specified for it. The KAnnSpec has a <template>...</template>

that will be used for this in the future. A tooltip will be provided
when an annotation is hovered upon.

2. Visualization of relational annotations can also be improved. An ideal
solution would be to display an arrow connecting the two annotations
when either annotation is hovered upon. As it is difficult to draw (and
compute positions of) arrows on XHTML pages, a simpler solution
would be to integrate this into the tooltip.

3. Distinction between annotations - Currently, all annotations are marked
in the same way - making it difficult to distinguish two annotations
if they are overlapping. In order to solve this problem, annotations
could be color coded depending on the concept they represent.

We want to integrate KAT with the CorTeX system [CT] as described
above. We want KAT to mainly serve two purposes in this sense:
1. to annotate individual documents within a larger corpus and provide

users with an interface to do so and
2. to review annotations which were either performed automatically or

by another user.
For both purposes we need to be able to distribute work between multiple
instances of KAT and CorTeX. The main task in this is to implement a
JavaScript client for the Gearman Job Server [Gea] underlying CorTeX;
once we have completed this, distributed processing and corpus support
in KAT are automatic.

The more immediate next steps will be to refine our annotation on-
tologies and integrate more linguistic ontologies to get more coverage. The
annotation ontologies might benefit from being compatible with the open
annotation data model [SCS13]. Note that the KAT system is compatible
with this, since it is parametric in the annotation ontology.

References

[AN] Annotation tool. url: Http://www.annotatiesysteem.nl
(visited on 02/15/2014).

[Aus+10] Ron Ausbrooks et al. Mathematical Markup Language (MathML)
Version 3.0. W3C Recommendation. World Wide Web Con-
sortium (W3C), 2010. url: http://www.w3.org/TR/MathML3.

[BR] brat rapid annotation tool. url: htp://brat.nlplab.org
(visited on 02/15/2014).

11

[CT] CorTEX Framework. url: http://cortex.mathweb.org (vis-
ited on 02/14/2014).

[Dah+11] Scalable Vector Graphics (SVG) 1.1 (Second Edition). W3C
Recommendation. World Wide Web Consortium (W3C), Apr.
2011. url: http://www.w3.org/TR/SVG11.

[Gea] Gearman Job Server. 2015. url: http://gearman.org/ (vis-
ited on 06/19/2015).

[Gro+03] Paul Grosso et al. W3C XPointer Framework. W3C Recom-
mendation. World Wide Web Consortium (W3C), Mar. 25,
2003. url: http : / / www . w3 . org / TR / 2003 / REC - xptr -

framework-20030325/.
[Hic+14] Ian Hickson et al. HTML5. A Vocabulary and Associated APIs

for HTML and XHTML. W3C Recommentation. World Wide
Web Consortium (W3C), Oct. 28, 2014. url: http://www.
w3.org/TR/html5/.

[HYP] Hypothes.is. url: http://hypothes.is (visited on 05/30/2015).
[KG] GitHub repository. url: https://github.com/KWARC/KAT/.
[Lan11] Christoph Lange. The OMDoc Ontology. Jan. 8, 2011. url:

http://kwarc.info/projects/docOnto/omdoc.html (vis-
ited on 02/03/2012).

[OLiA] OLiA Ontologies. url: http : / / nachhalt . sfb632 . uni -

potsdam.de/owl/ (visited on 11/09/2013).
[San] Robert Sanderson, ed. Annotation Use Cases. url: http://

w3c.github.io/dpub-annotation/ (visited on 05/30/2015).
[SCS13] Robert Sanderson, Paolo Ciccarese, and Herbert Van de Som-

pel, eds. Open Annotation Data Model. 2013. url: http://
www.openannotation.org/spec/core/.

[SR14] Guus Schreiber and Yves Raimond. RDF 1.1 Primer. W3C
Working Group Note. World Wide Web Consortium (W3C),
2014. url: http://www.w3.org/TR/rdf-primer.

[XPa10] XPath Reference. 2010. url: http : / / www . w3 . org / TR /

xpath/ (visited on 06/05/2010).
[YW] Yawas - The Original Web Highlighter. url: http://www.

keeness.net/yawas/ (visited on 02/15/2014).

12

