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Abstract. Rapid growth in mobile computing has given rise to a dra-
matic evolution in communication tools that have the potential to trans-
form the educational experience. Because of the complexities of mathe-
matical communication, however, progress towards the realization of that
potential has been particularly slow in the mathematical sciences. We
are addressing this by developing iCE (interface for Collaborative Equa-
tions), a multimodal mathematical communication environment for post-
secondary mathematics and statistics courses. Based on our experiences
with this, we discuss the user requirements and difficulties in building a
universal interface – one that allows users, ranging from mathematical
novices to experts, to intuitively communicate mathematics in real-time
using a broad range of computing devices.

Keywords: Mathematical Communication, Mathematical Collaboration,
Mathematical User Interfaces, Formula Input

1 Introduction

Mathematical reasoning can rarely sustain itself in the mind alone. Just as
Archimedes drew “geometrical figures in the ashes” [13], it is inconceivable that,
in a traditional university classroom, a mathematical conversation could be sus-
tained without the use of at least a chalkboard.

With the revolution in communication technologies, however, the face of
post-secondary education is changing. Flipped classrooms, Massive Open On-
line Courses (MOOCs), hybrid and fully online courses use the Internet to pro-
vide students with access to learning materials from anywhere at any time.
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Access to those learning materials is, of course, only one facet of the learn-
ing experience. While great libraries have existed for thousands of years, class-
room education has flourished because of the importance of student-to-teacher,
teacher-to-student and student-to-student communication. For example, outside-
the-classroom student-teacher contact (e.g., office hours, e-mail) correlates pos-
itively with key educational indicators such as academic performance, student
retention, and student satisfaction [9].

To remain relevant in the distance education market, it is therefore impor-
tant for universities to be more than mere content providers – they must embrace
the communication revolution to find ways to engage geographically-dispersed
students, with greater immediacy and increased efficiency on large MOOC-like
scales. There is evidence that higher education has fallen short in terms of the
use of mobile devices for out-of-classroom contact. A recent study [4] suggests
that 83.8% of students would use more app-based mobile communication if of-
fered by instructors, and 81.1% wished that their professors offered more virtual
communication options.

Anecdotal evidence suggests that virtual communication in mathematics lags
significantly behind that in other disciplines. One reason is likely the lack of
availability of user-friendly math-enabled communication tools. That is to say,
while real-time communication tools such as instant messaging, chat-rooms and
twitter are increasingly used by instructors to enhance the student experience,
those tools are text-based, so their usefulness in mathematics is severely limited.
Yet, the potential benefits of making mathematics communication more readily
available are clear, for it has been demonstrated that online office hours can be
very effective and efficient in mathematics courses, resulting in high levels of
attendance and student engagement [5].

In this paper, we will discuss the user-interface challenges in creating a real-
time communication environment for mathematics – one that is universal in
that it makes casual communication, i.e. without the user needing to pre-install
software or learn the interface in advance, between experts and novices alike
as easy and intuitive as possible, regardless of whether they are using a more
standard computing platform (Windows/Mac/Linux) or a mobile device such as
a tablet or smartphone.

2 Mathematical Input

To achieve the goal of having mathematical formulae be composed and dis-
tributed in real-time, there are several issues that must be overcome when de-
signing the user-interface and software.

First, there is the symbol problem. Mathematics makes use of far more sym-
bols than can be conveniently laid out on a keyboard. Expansion of what a
keyboard can do through the use of key combinations using the “alt”, “ctrl” or
“command” keys is difficult to achieve in a platform- or device-independent way
(e.g., these key-sequences are not available on mobile platforms). Even where
this expansion can occur, its use is difficult for a novice to learn.
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Second, there is the layout problem. Many mathematical expressions are
written in a 2-dimensional way, with symbols appearing above and below other
symbols, and where not all symbols are of the same size. The relative positioning
of the symbols is often important: altering those positions can change their
meaning in a critical way.

Third, real-time input of mathematics also presents a problem with sequenc-
ing. The order in which mathematical symbols are transferred to paper or screen
often does not reflect the left-to-right order of the final expression.

Fourth, while typos in real-time text-based communications are mostly harm-
less (the reader can typically figure out the intended meaning from the surround-
ing text) mathematics is a very precise language in which typos lead to errors
in mathematical expressions or to confusion among users.

3 Choice of Interface / Platform

Recent years have seen the fragmentation of platform monoculture. There is,
for example, a trend in many workplaces away from the support of a corporate
standard towards encouraging employees to ‘bring your own device.’ A similar
trend can be seen in post-secondary education, where many universities that
once provided a standard notebook computer to every student, now facilitated
by the advent of campus-wide wifi, expect students to bring their own.

A decade ago, it was a safe bet that every student had access to a desk-
top/notebook running Internet Explorer. Today, the landscape is more varied,
with devices, such as smartphones, tablets (some with a stylus; some without)
and a resurgence of Macbooks – a wide assortment of available devices that have
vastly different user interfaces, screen sizes and computational power. With the
introduction of Chrome, Firefox and mobile browsers, the market share for In-
ternet Explorer has decreased significantly.

For a mathematical communication interface that is meant for novice users
– for example, students wishing to only casually drop into an online office hour
– the requirement of special software or hardware, or the need to download and
install a specialized interface, may represent a barrier. A browser-based inter-
face is, therefore, a natural choice, provided it allows for intuitive behaviour on
multiple browsers. While there has been a proliferation of computing platforms,
many mainstream applications, such as Google Docs and Office 365, are already
browser-based and the web browser is quickly becoming a standard interface
for full-featured applications, especially collaborative ones. Rich browser-based
applications used to rely on Java or Flash, but these languages are no longer
well-supported and are not viable options.

Xpress [15] is a prototype for a new equation editor model which allows users
to build expressions by placing drag-and-drop symbols anywhere in their expres-
sion they wish without structural constraints. It was developed as a browser-
based application around a Scalable Vector Graphics (SVG) document supported
by Asynchronous Javascript and XML (AJAX). In developing the communica-
tion interface iCE, Mathematical Markup Language (MathML) was considered
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Fig. 1. MathIM

as it is intended to be the standard for mathematics on the Internet. However,
at the time of planning for iCE it was not fully supported [1], so iCE has been
developed around a front-end of Javascript/SVG. Mathematical communication
involves more than the input of formulae, and SVG makes implementation of
diagramming tools, scaling, and cut-and-paste easy and provides a default doc-
ument format.

4 Existing Math Communication Tools

To date, few communication tools have been developed specifically for mathe-
matics communication. Two freely available examples that we have experience
with are MathIM and enVision:

MathIM: MathIM is a typical Javascript/HTML-based scrolling chat with
the added ability to insert TEX images by including TEX code between $...$
delimiters. There are a small number of template buttons that insert some TEX-
code into the chat input line to assist with input. (See Figure 1).

Our experience is that TEX input is very difficult for even advanced math-
ematics undergraduates and is rarely used by students. Thus students using
MathIM tend to write their expressions descriptively using only text, which can
lead to many ambiguities. The software also only allows one line at a time, with
no ability to edit previous expressions. The ability to interact with and edit
expressions would speed up communication (e.g., a professor at a chalkboard
erasing symbols that are cancelled in an expression without rewriting it).

enVision: enVision is a typical Java-based shared whiteboard application that
includes a chat window for textual conversation. Its whiteboard is modelled after
a raster-based paint program which would allow users to either draw with a
pen or drag-and-drop or insert resizable mathematics symbols anywhere on the
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Fig. 2. enVision

shared canvas. An audio communication mode has been produced as a separate
add-on. (See Figure 2).

Our experience with this application is that students are able to communicate
relatively easily with this type of interface. However, since it is pixel-based,
deleting is accomplished by making use of an eraser brush, and symbols on the
canvas cannot be easily selected and moved like in a vector-based diagram editor.
More importantly, Java is not supported on newer devices, such as tablets, and
hence enVision is not a universal option.

Other technologies, including Skype and screen sharing could be used for
mathematical communication, but these approaches do not directly solve the
problem of joint work on shared equations and do require the pre-installation
of software which might represent a barrier for a student who has a simple
immediate question.

5 Models for Equation Editing

There are four distinct User Interface (UI) models for the creation of equations
on a computer or device:

Structure-based: Graphical structure-based editors are the most common form
of mathematical input UI. These editors typically separate mathematical struc-
tures, such as fractions, from the individual symbol elements. To enter a com-
plicated expression requires the user to first set up an appropriate structure of
nested boxes, which may then be populated with numbers or symbols (see Figure
3). These structures can be difficult to navigate and manipulate, and there are
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Fig. 3. Structure-Based Editor: BrEdiMa [10]

inconsistencies between editors [12]. One study [3] found that these editors are
difficult for students to use – there may be a steep learning curve in that they
force students to mentally parse a full expression first and in many cases enter
the expression in an unnatural order. This extra cognitive load can lead to dual-
task destructive interference with the main task of communicating mathematics
[11].

Pen-based: A robust pen-based mathematical expression input system that al-
lows one to input expressions as easily as one can on paper could be described
as the “holy grail” of mathematical equation input research. Unfortunately, the
challenge of recognizing handwritten mathematical expressions is much more
complex than that of recognizing handwritten text. While characters in hand-
written words have a one-dimensional layout (i.e., are arranged linearly in order),
mathematical expressions often have a two-dimensional layout (e.g., fractions,
matrices). Mathematical symbols also tend to be very similar, so determining
the differences between 1.2 and 1 · 2, between < and 〈, or distinguishing among
the symbols ·, •, O, o, 0, ◦, ◦,�,⊕,⊗, ∅,�, φ,	, θ, Θ, . . . , is a very difficult task –
one of many UI challenges remaining with mathematical pen input.

For the purposes of creating a universal user interface model, pen-input alone
is not a sufficient approach. Although pen-based devices have been available since
the 1980s [17], they are still not commonly used. While touch interfaces, such as
the iPad, would allow a user to draw an equation with a finger, the low touch
precision of these interfaces means that the size of the equation must be large
in proportion to the screen area.

Text-based: Mathematical content can certainly be communicated using text
only, but plain text communication is a poor option for mathematics beyond
the simplest expressions. An option that is sometimes used to address this is
TEX, the technical writing language created by Donald Knuth in 1978. TEX was
designed for “the creation of beautiful books” [6], and its relatively steep learning
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curve limits its use to experts, rather than to casual users. For example,

s_x = \sqrt{\frac{\sum_{i=0}^n (x_i-\bar{x})^2}{n-1}}

is a LATEX representation for the elementary formula

sx =

√∑n
i=0(xi − x̄)2

n− 1
,

which defines the sample standard deviation studied in high school and university
statistics. The LATEX string is not intuitive enough for novices.

Unconstrained Editor: Xpress [15] is an unconstrained editor where users
are free to create an expression any way they wish by essentially “drawing” it
on a canvas (see Figure 4). However, it is different from enVision in that the
UI model is that of a diagram editor, so the mathematical symbols are resiz-
able/draggable elements. Once an expression is drawn, Xpress applies a spatial
recognition algorithm to recognize it. See: http://www.xero.ca/xpress.swf for
a Flash video demo of Xpress to better understand this approach. In the main
pane, a user draws a diagrammatic representation of the expression and it is rec-
ognized and converted to LATEX code (lower right in the video). The LATEX code
is compiled and the result is previewed (lower left in the video) to demonstrate
correct recognition.

It has been shown that with this unconstrained approach, students tend to
write expressions in the same order that they would on a piece of paper and
with greater speed than with a structure-based editor [3,16].

6 Specific Universal Interface Model

The goal of iCE is to develop a multi-user communication interface that will
run on a wide range of platforms and that will allow users with different de-
grees of mathematical experience to communicate with each other in a casual
(but accurate) manner. We will consider a mathematical UI model based on an
unconstrained approach, such as with enVision/Xpress, but it will include as
many elements as possible from other approaches with which a user might be
familiar, including pen, structural and TEX.

Until recently, the most common platform for accessing the Internet was a
personal computer equipped with a keyboard and mouse (or equivalent pointing
device). In recent years, with the advent of mobile computing, touch devices, such
as smartphones and tablets, are becoming ubiquitous. These devices typically
have small screen sizes and rely on virtual onscreen keyboards. Some smart-
phones and tablets have a built-in digital pen, but others, such as iOS devices,
have no built-in pen. Even when a digital pen is available, these styli are blunt
and do not provide a high degree of accuracy on a small screen. Thus, to be
usable on all platforms, a universal interface must consider the UI models for
keyboard, mouse, pen, and finger touches.

http://www.xero.ca/xpress.swf
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Fig. 4. Xpress

6.1 Keyboard Interaction

There are three basic interactions in the iCE model: a text mode, a symbol
mode, and a TEX mode.

Text Mode: As iCE is designed as an extension of the diagram editor UI model,
it includes a text mode which can be engaged from the mode selection panel.
The text mode allows a text box to be placed anywhere on the screen with
text that can assume various font attributes: style, size, italics, bold, colour, etc.
It behaves similar to the text mode found for labelling diagrams in a typical
diagram editor.

TEX Mode: TEX Mode is similar to Text Mode in that text is entered into
a text box. However, in this case, once the text entry is complete, the TEX is
compiled into SVG using MathJaX via a web-service call. At this time, the TEX
input cannot be edited after it is compiled, but the resulting visual expression
can be edited using the iCE drag-and-drop UI model.

Symbol Mode: This UI mode is unique to the iCE/Xpress model. In the iCE
model, when in almost any mode, there is a cursor on the screen. Whenever a
user clicks or taps on a blank section of a canvas, the symbol mode cursor is
placed at that point. Cursor keys also allow the cursor to be moved freely in any
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direction in fractional steps. Once a key is pressed on the keyboard, that key’s
corresponding symbol is placed in the cursor location. With repeated presses of
the key, however, the placed symbol cycles through several logical alternatives.
For example, “<” cycles through “<”, “≤”, “�”, “∠”, while pressing “A” cycles
through “A,” “α,” “∀,” “∧,” “ℵ,” “∠.” If the symbol mapping is not intuitively
obvious, a symbol could be inserted by clicking on a symbol from a palette.

In addition to these keyboard modes for the shared SVG document, there
is also a chat pane. In our model, the shared SVG document is like a physical
chalkboard where individuals are engaging, while the chat pane is for the bulk
of the conversation. While this is primarily text based, it will support symbol
input from palettes as well as TEX for expert users as MathIM does.

Text interactions work well on a desktop or laptop computer. However, touch
devices typically have virtual keyboards. While a custom virtual keyboard could
solve the symbol problem by offering alternate key selections that have math
symbols, this can be problematic: Android allows the user to install custom
keyboards, but iOS does not. However, custom Javascript keyboards can still be
implemented in a web browser.

Virtual keyboards also have several drawbacks. First, they can occupy about
half of the screen when engaged. This is further compounded by the fact that
browser applications are embedded in browsers, which typically have their own
UI components that can occupy their own screen space. Second, because pre-
cision in determining touch location is low, it is easy to make errors on touch
keyboards. Text methods for input on touch devices often include correction –
for example, dictionary matching – to increase accuracy. For mathematical ex-
pression input, the very broad range of correct mathematical expressions makes
robust corrective algorithms extremely difficult to implement. Third, the key-
boards can be very distracting as they repeatedly appear/disappear as the user
switches between text input and a touch interaction, such as a click or drag.

For touch devices, the iCE model currently uses a combination of OS virtual
keyboards (text mode or chat window) and a basic custom javascript virtual
keyboard (symbol mode). More research needs to be conducted concerning the
best way to handle text input of mathematics on a virtual keyboard. For example,
the iOS virtual keyboard is not well suited for inputting TEX, as symbols, such
as {, }, $, \, _, are not grouped together or found on the same screen.

6.2 Mouse/Pointer Interaction

The mouse/pointer interaction in iCE is modelled after that of a standard di-
agram editor, where objects may be placed anywhere on a canvas, moved and
resized. In the case of iCE, instead of objects being restricted to diagram ele-
ments, such as boxes and arrows, mathematical symbols may be placed anywhere
on the canvas. These symbols may be manipulated as follows:

Moving: Any individual symbol may be moved by just dragging it.

Selection: Any group of symbols may be selected by dragging out a selection
box starting from any blank spot on the canvas (see Figure 5). When completed,
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Fig. 5. Selection in iCE: (a) selecting a subset of symbols; (b) a single group of the
selected symbols are outlined.

Fig. 6. Resizing in iCE: (a) a resize widget on a PC; (b) a larger resize widget on an
iPad.

any objects falling inside the box will be selected. A selected group can be moved
by dragging the group. By clicking/tapping on a blank selection of the canvas,
the group is unselected. Currently, iCE implements rectangular selection for all
devices, although our tests indicate that, particularly for touch devices, a lasso-
style selection of elements, in which users circle the group of elements that they
want to select with their finger, may also be an effective possibility.

Resizing: If an object is clicked on or tapped on, resizing widgets appear which,
when dragged, resize the object. These resize widgets will automatically be larger
on touch devices to account for the lower click/tap precision. (See Figure 6.)

6.3 Expression Recognition

A selected group of symbols may also be converted into TEX typeset output
form for high quality visual display by having the user click on the “convert
to TEX” button on the mode panel, using a similar approach to the expression
recognition found in Xpress.

iCE also has a free sketch mode, where a user may draw freely in a layer of
digital ink. In the future, once a group of pen-drawn symbols is selected, the
group might be passed to a handwriting recognition algorithm to have the entire
expression to convert into TEX typeset output.

At the moment, expressions are only recognized for presentation structure.
In the future, it might be possible to try to recognize mathematical expressions
for the purpose of eliciting mathematical content structure. Once recognized, the
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extracted content could be passed to a Computer Algebra System to assist with
intermediary steps in order to speed up communication.

Inline expression recognition could also be valuable for assisting users in
forming expressions. In its current form, iCE has a “snap” feature, which, when
dropping or resizing symbols, forces the symbols to stick to some invisible lines.
As a possible extension, an inline expression recognition algorithm could, as an
expression is being created, determine the most likely locations for additional
symbols to be appended, and, by way of a magnetic attraction, provide the user
with subtle hints for where the additional symbols should be placed. Analogous
to the auto-complete feature now becoming ubiquitous in many text applications,
these suggestions could then be used or ignored – the user would still be free to
place the symbols anywhere on the canvas. This approach can also be thought of
as a hybrid between an unconstrained editor like Xpress and a more structure-
based editor.

7 Conclusion/Discussion

In this paper, we have considered a model for real-time communication that
combines UI elements from palette-based structural editors, keyboard-based TEX
input, whiteboard UIs and text messaging panels. The goal is that each user
would be able to use the model or models that best suit their experience and
hardware limitations, making communication as easy as possible.

Our experience is that this model works very well on desktops/laptops. The
drag-and-drop portion of the model also works well on tablets; virtual keyboard
improvements would still need to be explored. Because of its limited screen
size, the smartphone provides a challenge for inputting equations quickly and a
robust zoom in/out feature will likely have to be developed. However, the high
resolution of smartphone screens means this model allows the user to easily view
the discussion and provide occasional input. It should also be noted that, if the
trend towards increasing smartphone screen sizes continues, these concerns may
be mitigated.

When developing a mathematical communication interface, careful consider-
ation must also be given to the issue of conflict resolution. Is the canvas truly
shared, as in a free-for-all, or should there be a method of managing which user
has the canvas? How should the editing of other users’ contributions be man-
aged? What about sequencing – if, say, a user arrives late, can he/she play back
a portion of the conversation? These questions, while important, are beyond the
scope of this paper.

There is undoubtedly a need for the development of communication envi-
ronments designed specifically for mathematics – a task made more difficult by
the growing range of user devices. We hope that, by exploring this issue, we
are taking the first steps towards building a universal interface for the real-time
communication of mathematics.
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