
Developing	 visualisations	 for	 spreadsheet	 formulae:	
towards	 increasing	 the	 accessibility	 of	 science,	 	
technology,	 engineering	 and	 maths	 subjects	

Roxanne Leitão and Chris Roast

C3RI, Sheffield Hallam University
{r.leitao, c.r.roast}@shu.ac.uk

Abstract. Spreadsheets are widely used within Science, technology, engineer-
ing and maths education. Despite their widespread use, end-user spreadsheet er-
rors are still extremely common and have been shown to have an adverse effect
on learning. The textual representation of formulas can be particularly complex
and error-prone, exacerbating barriers to dyslexic users. Our work focuses on
the design and development of a visual language to graphically represent
spreadsheet formulae, with the objective of making them easier to understand
than their default textual form. This work contributes to a body of human fac-
tors research focused upon spreadsheets.

Introduction

It is estimated that 10% of the UK population is Dyslexic, with 4% being seriously
affected (Association 2012). Regarding Dyscalculia, there are an estimated 3 million
people in the UK who are affected, with 5% of school and higher education learners
challenged by it. Dyslexic learners face a number of challenges related to reading,
writing and numeracy skills (Association 2013), and may therefore find significant
barriers when looking towards developing their education in numerate disciplines such as
science, technology, engineering and mathematics (STEM).

One tool common to establishing confidence and educational progress in STEM
subjects is the spreadsheet. Widely used in work and education (Chambers and Scaffidi
2010), at school level and in higher education, the spreadsheet is a core
generic tool to understanding in numerate subjects. To help address the difficulties that
dyslexics and dyscalculics face in STEM our work aims to aid the understanding of
spreadsheets.

Despite the pervasive use of spreadsheets, studies have found that as many as 86% of
user spreadsheets contain errors (Panko 2008). Although spreadsheets are commonly
believed to be intuitive to use, research with actual users contradicts these claims
(Hendry and Green 1994, Panko and Sprague Jr 1998, Panko 2008). Hendry and Greene
(1994) found that users experience a wide-range of issues relating to the 1) mapping
between spreadsheet layouts and functions and the task at hand, 2) the writing of textual

formulae and their progressive debugging, and 3) the visibility of spreadsheets where the
underlying formulae are hidden, or all shown, in which case the results are hidden. Panko
(2008) classifies spreadsheet modelling errors according to 1) mechanical errors which
include mistyping numbers, signs, pointing to the wrong cell, reading a number incorrect-
ly, or selecting the wrong range, 2) logic errors which relate to faulty reasoning, and 3)
omission errors where users leave something out of a model.

Although to the best of our knowledge, no work has been done to investigate dyslexia
and the difficulties these users might specifically face with textual formulae, a wide pool
of research exists regarding issues experienced while reading and writing letters, words
and connected text. Some of the issues that dyslexics can experience are 1) difficulty in
recognizing alphanumeric symbols and punctuation (Stein and Walsh 1997), 2) difficul-
ties in scanning text without loosing their place (Rello, Kanvinde et al. 2012), 3) revers-
ing letters and numbers, and 4) issues in perceiving individual letters separately from
those around them (Gregor, Dickinson et al. 2003). Given the textual nature of the formu-
lae in spreadsheets, we expect that the difficulties experienced with reading text will be
similar to those with textual formulae. Additionally, the specification of formulae can be
particularly complex as numbers, arithmetic operators, calls to built-in functions, and cell
references are all textually represented in a single line of continuous characters. This
example of the positive solution for quadratic equations helps illustrate the issue:

=(-B1+SQRT(B1*B1-4*A1*C1))/(2*A1)

Previous work has suggested that dyslexic people may be highly visual thinkers (Tafti,

Hameedy et al. 2009, Davis 2010, Association 2012). Our work aims to make spread-
sheet formulae easier to understand by transforming their textual representation into a
graphical one. We have largely followed the conventions of dataflow diagrams to design
a set of visual elements that come together to form diagrams that demonstrate the struc-
ture of these formulae. By providing a visual ‘scaffold’ of geometric forms, colours and
connectors, we aim to make the relationship and sequence of formulae elements more
evident and immediate, taking advantage of our target-audiences’ strengths and skills.

By doing so, we expect to 1) enhance learners’ comprehension of spreadsheet
formulae, 2) better enable ‘debugging’ of formulae, and 3) aid the construction of
syntactically correct formulae.

For example, if a cell is presenting an unexpected result, the student will need to
closely inspect the formula and essentially ‘debug’ it. Based upon existing knowledge
regarding dyslexia, inspecting the formula in textual form might present difficulties aris-
ing from mis-reading tokens and reading tokens in the wrong order or sequence. Provid-
ing a graphic alternative has the potential to help address such problems and thus enhance
users’ ability to correctly read and interpret what is going on.

This paper describes an approach to making textual formulae easier to read and under-
stand for dyslexic users. We are developing a visual language that will be integrated into
a Google Sheets plugin. This plugin will allow users to call upon a visual representation
of any formula within the spreadsheet, which will be displayed as a popout window. Our
aim is to develop a prototype that will not only visualise formulae but also enable:

1. the dynamic manipulation of the geometric figures, so users can alter and ‘write’
formulas by manipulating visual blocks
2. visualising and navigating between referenced formulas by selecting Cell references
within the visualised formulae.

The following sections describe related work in visualising spreadsheets, a description

of the work we’re currently developing, future work and the conclusions.

Related work

Graphical representations, such as flowcharts, and pictorial representations of data
structures have long been known to be a significant aid in the understanding of
programs and their underlying processes (Myers 1986).

Previous work has investigated the relationship between spreadsheet structures and
proposed ways of visualizing them. Igarashi, Mackinlay, Chang et al. (1998) proposed a
tool to visualise the dataflow structures associated with individual cells, which they call
Local Transient Views, while the Static Global Views and Animated Global
Explanations visually present the entire data structure at once. Ballinger, Biddle and
Noble (2003) present several spreadsheet visualisation techniques, exploring dataflow
and cell dependencies. However, unlike Igarashi, Mackinlay, Chang et al. (1998), their
work does not explore visualisations within common spreadsheet tools, but
instead creates a tool that is independent of the programs used to create the spreadsheets
themselves. Burnett, Atwood, Djang et al. (2001) propose the Forms/3
language exploring the spreadsheet paradigm as a way of ‘programming’ graphical
outputs, including animations and GUI elements (Burnett, Atwood et al. 2001).

Existing version of Microsoft Excel provide debugging tools that highlight a cell when
users place their cursor on a cell reference in the formula bar, as well as the ability to
trace and visualise precedent and dependent cells within a spreadsheet.

These works and tools consider the wider structure of spreadsheets, and the dependen-
cies between cells. However, they do not explore dataflow and computations within each
individual formula.

Cox and Smedley (1994) apply the principles of Prograph, a visual object-oriented
programming language, to allow users to view and manipulate formulae within
individual cells. Although their approach provides a visual display of these formulae and
the processes occurring within them, it relies heavily upon users’ previous knowledge of
the Prograph programming language.

The following sections describe our approach to visualizing spreadsheet formulae. We
have focused upon school age children (15+) who are considering their options for
further and higher education. In particular it is this population, which may find that
difficulties related to dyslexia and dyscalculia, impair confidence and achievement in
STEM-related subjects. Despite this within the context of our empirical work is relatively
rare for individuals at this level to be formally diagnosed with specific learning difficul-
ties such as dyslexia.

Spreadsheets STEM education

Spreadsheets are widely used in educational settings, from mathematics, to engineer-
ing (Oke 2004), science and technology (Sjøberg 2002). Spreadsheets can
provide learners with experience in mathematical modelling, a skill that is transferable to
professional settings such as teaching, and engineering. In engineering
education, spreadsheets have been found to facilitate the understanding of the
essential features of a model instead of overly focussing on the mathematical aspects
(Oke 2004), and have been widely used in mechanical, electrical, nuclear, and civil
engineering, etc. Spreadsheets and other Information and Communication Technologies
(ICTs) have also been established as fundamental tools in mathematics education (Stohl
Drier, Harper et al. 2000).

Our work: developing visualisations for spreadsheet formulae

Objectives

Considering the issues that dyslexic users face in reading and correctly interpreting
text, and therefore textual formulae, our approach aims to graphically make evident:

• The sequence of numbers/values and operators in a formula.
• The distinction between cell references and other numerical values.
• The distinction between values and operators or functions.
• The sequence of calculations.
• The flow of data throughout calculations.

We expect that this will allow users to interpret and debug a formula without depend-
ing on its textual representation to infer the formula’s structure, underlying order of
operations and cell references.

The structure of our visual languages

In spreadsheets, computations are defined by cells and their formulae. The visualisa-
tions being developed are a test bed that allows us to explore which visual characteristics
are better or worse understood by our end-users, with the objective of
developing a final single visual language that will enhance the construction, comprehen-
sion and ‘debugging´ of spreadsheet formulae.

We have developed two languages that explore different features to address the same
issues. The first explicitly shows the original formula, the order of operations and
computations, and the results of each computation. The second provides a higher-level
more abstract view, where the order of operations and computations are

represented, but the results of computations are not. We will call the first the ‘Explicit
Visualisation’ (EV) and the second ‘Dataflow Visualisation’ (DV). Our aim is to evaluate
both languages with learners, in order to understand which better enhances the compre-
hension of spreadsheet formulae and engage in a continual development of the languages
until we achieve a final optimal result. This result will be a single visual language that
has been constructed from the best features of the test bed languages, based upon the
results of our evaluations with learners.

Our visualisations are largely based on a data flow metaphor, which presents a set of
interconnected components, or nodes with dependencies between each other.

Both EV and DV share some basic graphic characteristics:

• They are read from left-to-right and top-to-bottom.
• They follow the order of operations within a formula.
• Numeric values (Fig.1), cell references (Fig.2), strings (Fig.3), operators (Fig.4)

and built-in spreadsheet functions (Fig.5) all have different combinations of shape
and colour, making them visually distinct from each other.

Fig. 1. Numeric values.

Fig. 2. Cell references in
DV (right) and EV (left).

Fig. 3. Strings.

Fig. 4. Operators

Fig. 5. IF and POWER built-in functions

• To indicate repeated cell references, within the same formula, the same cell
reference will always have the same background pattern.

• ‘Wires’ show the flow of data between computations.

Both languages are also based on a set of shared definitions:

• Calculations are executed when all sources of data are available. For example,
given =3+2*4 the addition will only be computed when the result data is available
from the multiplication.

• Sources can be constants, variables, or strings.
• Operators are mathematical functions (e.g., add, subtract, multiply and divide).
• Functions are built-in spreadsheet functions, such as IF and POWER.
• Monitors visually show the results of computations.

The following sections describe the specific underlying structures of the EV and

DV languages.

Dataflow Visualisation (DV)
DV focuses on the order of operations and dataflow within a formula. It embodies

a higher-level, more abstract view than EV, and has been developed according to the
construction rules presented below.

1. The visualized formula is not an exact visual match of the original Excel formula,
where Sources constitute the first line of the visualization and lead into operators.
Sources have no inlets, only outlets. For example, considering =B2*A2:

2. Sources are all values, whether they are, or not, contained within a Cell.
3. Cell references are not replaced by their numeric values. Our approach in DV

is that the visualisation should demonstrate the underlying processes within
a function, independently of any numeric values placed within Cells.

4. Brackets are eliminated, as they can be inferred by the order of operations
represented by the visualisations. This allows us to significantly reduce the
number of visual elements and simplify the overall graphics.
For example, for =POWER(B1*((D1+A1)*C1), 2):

5. Sources feed into Operators and Functions, where computation happens ‘behind
the scenes’. Operators and Functions have inlets where data comes in, and outlets
where the result of a computation flows out of one operator/function, and into the
next. For example:

6. Given that DV visualises formulae independently of the numeric values placed
within Cells, there are no Monitors to visualise the result of a computation.
For example, considering =B2*A2/(A1/A3+A4)-C2:

This approach’s strength is that it is able to demonstrate the workings of a formula

without requiring Cells to be already filled with values. DV makes evident the
underlying order of operations within a given function and therefore, allows users to
better understand how a particular formula is working and how it might need to be
modified to achieve the desired result.

Explicit Visualisation (EV)
Unlike DV, this approach graphically represents each step in the process of execut-

ing a formula. EV has been designed and developed according to the rules of con-
struction presented below.

1. The visualised formula is a visual match of the original spreadsheet formula, where
it is integrally represented on the first line of the visualisation. This approach
provides a more immediate mapping between the textual (default) and visualised
versions of the same formula.
For example, considering: =A2*B2/(A1/A2+A1)-C2:

2. Cell references are replaced by their numeric values. The visualisation maintains
the original Cell reference, but places emphasis on its numeric value. This allows
us to compute results at every step of the visualisation and provides a more explicit
view of the process and results within a formula:

3. Sources and Operators feed into Monitors, where the result of a calculation is
shown. Unlike in DV, users can see the results of a computation and view how data
is being manipulated throughout the calculation of a formula.

In our understanding, the strength of EV lies in the fact that it visualises every step
of the process, and the results of every computation. It is our expectation that such an
explicit visualisation will enhance learners understanding of the processes unrolling
within a particular formula.

On-going and future work

These visualisations are currently being evaluated with users in a paper-based format.
We are evaluating them with learners (15+ years of age) from a range of Colleges within
Yorkshire, UK. In each session, we have 1) a control group that performs the tasks with-
out any of the visualisations, 2) a group solving tasks with the aid of the Dataflow Visual-
isations, and 3) another group with the Explicit Visualisations. Before solving the tasks,
users fill in a questionnaire that assesses dyslexic tendencies, allowing us to compare the
results of students who show dyslexic traits and those who do not (Vinegrad 1994). Alt-
hough these evaluations fail to consider the environment (spreadsheets) in which these
visualisations will eventually be integrated, they are rather looking at comprehension and
adequacy of the visual languages before moving on to implement them in the functioning
plugin.

We are also working on the extensibility of the languages, and their capability to deal
with more complex built-in spreadsheet functions, such as conditional IF statements. We
are particularly addressing issues related to the visual complexity of nested conditional
statements, exploring concerns related to ‘wires’ crossing over each other, and the elevat-
ed number of visual elements in a graphic for a single formula.

In parallel, the visualizations are being implemented as a Google Sheets plugin. This
plug-in analyses the formula within a Cell and automatically generates the visualisations,
allowing users to easily access them while remaining in the spreadsheet environment.
Future integration will look at issues such as 1) interactive manipulation of the graphic
blocks to write and modify formulae, 2) the navigation between referenced formulae and
cells, and 3) matching the colour coding between Google Sheets and the visualisations.
Formal end-user evaluations of the prototype will be carried out in June 2014.

Conclusion

The widespread use of spreadsheets in work and education may pose significant barri-
ers to learners with Dyslexia and/or Dyscalculia. The textual form in which spreadsheet
formulae are presented may exacerbate Dyslexic symptoms, such as confusing similar
letters and symbols, and issues in perceiving the correct order of sequences of characters.

Our approach to graphically visualising formulae and their computations aims to take
full advantage of “visual thinking” which has been found to be a strength that is com-
monly associated with Dyslexia.

We have developed two prototype visual languages, the first – DV – visualises formu-
lae according to a dataflow model and abstracts the formula from numeric values placed
within Cells. The second – EV – is more detailed in its approach and visualises each
computation within a formula, along with the results of these computations at every step.

Both languages are still a work in progress and are currently being evaluated (in paper
form) with students from a range of Colleges within the South Yorkshire, and will be
evaluated as a functional Google Sheets plugin in June 2014. Based on the findings from
these
evaluations we will further refine our approach and work toward a single visual language
that takes advantage of the best characteristics of both DV and EV.

Our aim is to identify the approach that best 1) enhances learners’ comprehension of
spreadsheet formulae, 2) better enables ‘debugging’ of formulae, and 3) is more success-
ful in aiding the construction of syntactically correct formulae.

Acknowledgements

The authors would like to acknowledge the Small Business Research Initiative's
"Ready steady STEM" programme for supporting this work. The programme is man-
aged by JISC Techdisc and funded by the Department for Business Innovation and
Skills and the UK’s innovation agency, the Technology Strategy Board. The work is
also reliant upon the co-operation of colleges and learners’ willingness to participate

in studies. The authors would also like to thank reviewers for informative feedback on
the first version of this paper and identifying relevant additional research.

References

1. Association, B. D. (2012). Adults and Dyslexia, 40 years on . . . , British Dyslexia
Association.

2. Association, T. B. D. (2013). "Handy Hints for Secondary School Teachers." Retrieved 12
May, 2014, from http://www.bdadyslexia.org.uk/about-dyslexia/schools-colleges-and-
universities/secondary-hints-and-tips.html.

3. Burnett, M. M., et al. (2001). "Forms/3: A first-order visual language to explore the
boundaries of the spreadsheet paradigm." Journal of functional programming 11(2): 155-
206.

4. Chambers, C. and C. Scaffidi (2010). Struggling to excel: A field study of challenges faced
by spreadsheet users. Visual Languages and Human-Centric Computing (VL/HCC), 2010
IEEE Symposium on, IEEE.

5. Davis, R. (2010). The gift of dyslexia: why some of the brightest people can't read and how
they can learn, Souvenir Press Ltd.

6. Gregor, P., et al. (2003). "SeeWord—a personal word processing environment for dyslexic
computer users." British Journal of Educational Technology 34(3): 341-355.

7. Hendry, D. G. and T. R. G. Green (1994). "Creating, comprehending and explaining
spreadsheets: a cognitive interpretation of what discretionary users think of the spreadsheet
model." International Journal of Human-Computer Studies 40(6): 1033-1065.

8. Myers, B. A. (1986). "Visual programming, programming by example, and program
visualization: a taxonomy." ACM SIGCHI Bulletin 17(4): 59-66.

9. Oke, S. A. (2004). "Spreadsheet applications in engineering education: A review."
International Journal of Engineering Education 20(6): 893-901.

10. Panko, R. R. (2008). "Spreadsheet errors: What we know. what we think we can do." arXiv
preprint arXiv:0802.3457.

11. Panko, R. R. (2008) What We Know About Spreadsheet Errors. Journal of End User
Computing's Special issue on Scaling Up End User Development 10, 15-21

12. Panko, R. R. and R. H. Sprague Jr (1998). "Hitting the wall: errors in developing and code
inspecting asimple'spreadsheet model." Decision Support Systems 22(4): 337-353.

13. Rello, L., et al. (2012). Layout guidelines for web text and a web service to improve
accessibility for dyslexics. Proceedings of the International Cross-Disciplinary Conference
on Web Accessibility, ACM.

14. Sjøberg, S. (2002). "Science and technology education: Current challenges and possible
solutions." Innovations in science and technology education 8.

15. Stein, J. and V. Walsh (1997). "To see but not to read; the magnocellular theory of
dyslexia." Trends in neurosciences 20(4): 147-152.

16. Stohl Drier, H., et al. (2000). "Promoting Appropriate Uses of Technology in Mathematics
Teacher Preparation." Contemporary Issues in Technology and Teacher Education 1(1): 66-
88.

17. Tafti, M. A., et al. (2009). "Dyslexia, a deficit or a difference: Comparing the creativity and
memory skills of dyslexic and nondyslexic students in Iran." Social Behavior and
Personality: an international journal 37(8): 1009-1016.

18. Vinegrad, M. (1994). "A revised adult dyslexia checklist." Educare 48(1): 21-23.

