
Towards Intelligent Summarising and Browsing
of Mathematical Expressions

Ivelina Stoyanova
I.Stoyanova@alumni.bath.ac.uk

Department of Computer Science
University of Bath, Bath BA2 7AY

United Kingdom

Abstract. Most computer algebra systems, by default, output the re-
sult of the symbolic computations in expanded form with all the de-
tails which usually makes the result difficult to read. Many systems have
some techniques to alleviate this difficulty, but the techniques are usually
system-specific, and often not programmable.
This paper describes the application OpenMath Browser. Its primary pur-
pose is to serve as a tool for demonstrating and testing of summarisation
and browsing approaches. Being based on OpenMath as its input, it is
not system-specific, and can serve as a basis for experiments into the cor-
rect way(s) of displaying, and interacting with, mathematical expressions
independently of their origin.
A demo version of the application, described in section 4 and [5], can be
seen at:
http://staff.bath.ac.uk/masjhd/OMBrowser/OpenMathBrowser.html.

1 Introduction

The main focus of the work presented here is to investigate possible approaches
and techniques for efficient graphical representation of large mathematical ex-
pressions aiming at improvement of their understanding. This involves summari-
sation of the expression so that its abstract structure is revealed, and further
providing means for browsing the structure and expanding the components of
the expression to a varying degree.

The demonstrator reads expressions encoded in OpenMath [1] to ensure sys-
tem independence. A production version would doubtless use an OpenMath do-
main object model interface to the algebra system rather than text representa-
tions, but for prototyping purposes a text interface is sufficient.

We see several applications for a tool such as ours.

– Maths education. Summarising long mathematical expressions can demon-
strate their building components and thus facilitate perception of ideas and
understanding of mathematical manipulations.

– Research in Mathematics. Navigating complicated expressions can help give
an overview of the result rather than forcing attention to the details.



– Development of tools for presenting mathematical expressions to the visually
impaired. In recent years several tools for navigating mathematical expres-
sions were developed for visually impaired people. The specific task of these
tools is to represent expressions with various degree of detail correspond-
ing to the natural, intuitive way in which the user perceives mathematical
expressions.

2 Prior art

Some computer algebra and other systems offer a limited number of functionali-
ties related to summarisation and navigation of large mathematical expressions.
The results of a detailed overview of such functionalities and systems is presented
briefly below.

In Mathematica very large expressions are displayed in a nested interface
allowing for refining the level of detail of the output. It also provides function
Short which can be used directly for finer control over the display of expressions.
For example, it can be used to shorten output which is not large enough for the
default suppression to take place.

Mathematica also allows sparse storing of SparseArray which can be used
for arrays, matrices and vectors. For displaying large matrices or when some of
the entries are large the same principles as outlined above are applied.

Maple outputs matrices with a dimension greater than 10 for worksheet and
25 for command-line version, in a summarised form, providing a brief description
of the matrix and offering the option to view the matrix in a separate window.

In a sense, the construct RootOf is also a form of summarisation, as it rep-
resents any element of a set of solutions, which may be very large. Maple also
provides procedures evalindets and subindets which allow to transform all
subexpressions of a given type or matching some description.

The package format for the computer algebra system Macsyma provides
means for user-directed hierarchical structuring of expressions with navigation
options. It also allows directing certain simplifications and manipulations over
selected subexpressions matching a template.[4]

The symbolic toolbox of Matlab offers the command subexpr which allows
rewriting some symbolic expression in terms of common subexpressions. Fur-
ther, the command subs can be used to perform symbolic substitution in the
expression.

In recent years a great deal of research was invested in developing tools for
representing mathematical expressions in a form suitable for visually impaired
people. The significance of “visual syntax” was pointed out, that is the spatial
location of symbols and groups of symbols on the page which facilitates parsing
the expression first and then helps building a strategy for solving. It is also
important for the user to be able to access the structure of the expression and
to browse its parts in detail. [3]



3 Technical details

3.1 Consideration of efficiency

Efficiency with respect to the representation of large mathematical objects can
be described in terms of the following:

– Efficiency of the graphical representation. This may be measured by the
size of the displayed expression, more specifically, the area of the box it is
displayed in.

– Efficiency in terms of time, in particular the time it takes to display the
expression.

– Efficiency in terms of storage required for the mathematical object and any
additional resources necessary for its processing.

– Efficiency in terms of semantics. It is important to find the balance between
the richness of encoding and the economy of graphical output. This involves
considerations of the particular task the analysis of the expression is involved
in.
E.g. if we need to know how many different solution the equation

(x− 1)2(x−
√
y5 + y4 + y3 + y2 + y + 1)(x− 3

√
y5 + y4 + y3 + y2 + y + 1)

has, an output of the form A,A,B,C is sufficient. However, if we need to see
what the form of the actual solutions is, we need more details, for example
12,
√
D, 3
√
D (where 12 means “1 with multiplicity 2”).

Intelligent operability is closely related to efficiency, especially in terms of
semantics. We aim at finding representation of mathematical expressions which
facilitates human perception and understanding of mathematical content.

3.2 Equality between mathematical expressions

The problem of equality is one of the fundamental problems of the project and
in computer algebra in general (see [2]). We distinguish between the following
types of equality:

– Data structure equality: two mathematical objects are considered equal if
they are represented by identical data structures.

– Equality by reference: this is the equality between an object and a reference
to it, or equality between two references to the same object.

– Mathematical equality: equality between two mathematical objects which
can be proved by mathematical means (manipulations, application of axioms,
theorems, etc.).

The following proposition appears in [2] and it points to a possible approach
in handling equality.

Proposition 1. If the representation is canonical, then mathematical equality
(in O) is the same as data structure equality (in R).



Defining a canonical representation of OpenMath objects also depends on
their mathematical characteristics and it is not easy to do and even not always
possible. E.g. for polynomials ordering on monomials can be introduced, but it
is far more complicated to define canonical form of some elementary functions
(see examples in [2]).

At present we only consider data structure and referential equality.

4 OpenMath Browser

4.1 Purpose of OpenMath Browser

The main purpose of an application for intelligent summarising and browsing
of mathematical expressions is to provide means for representing mathematical
content in a form facilitating its understanding and to allow the user to adjust
the representation to their needs. With regard to this the suggested use of a
summarising and browsing tool is as a supplement to any computer algebra
system or any other software for mathematical manipulations.

However, at present the main role of OpenMath Browser is to demonstrate,
test and evaluate the performance of various techniques for summarisation, nav-
igation and display need.

OpenMath Browser is fully developed in Java using a set of external libraries:
the RIACA library for parsing OpenMath input in XML format; a phrasebook
for translating the OpenMath object into LATEX; the library JLatexMath for
rendering LATEXcode developed by Scilab.

4.2 Options for summarisation and characteristics of labels

An extensive set of options was constructed to allow adjustment of the summari-
sation and display of expressions in order to enable observations and evaluation
of different approaches.

The options for summarisation offered by OpenMath Browser are the follow-
ing.

– Maximum height to display: all expressions of a greater height are suppressed
and labeled.

– Maximum number of arguments: expressions with larger number of argu-
ments are suppressed and labeled.

The options for display offered by OpenMath Browser are the following.

– Using colours for labels: which would facilitate distinguishing labels visually.
– Option to suppress first occurrence of repeated expressions. In the case when

it is not suppressed first occurrence is placed in a box with the label sub-
scripted.

– Option to use the name of the symbol (i.e. name attribute of the OMSymbol)
of the expression. When this option is selected the label contains the name
of the symbol and the index of the expression in the hash table.



– There are different labels for repeating expressions, those with large height
and those with large width.

One of the main problems of the summarisation is the use of suitable and
informative labels. On one hand, labels replace some expression and the require-
ment for effectiveness of graphical representation implies that they should be at
least as short as the expression they stand for. On the other hand, it is desirable
that they provide some relevant information or a description of the expression.

Labels we use in the application satisfy the following conditions:

– different expressions are replaced by different labels;
– equivalent expressions are replaced by the same labels (mathematical equal-

ity is excluded);
– labels contain the unique ID of the replaced expression which is its index in

the hash table;
– labels may contain information about the mathematical operation of the

expression;
– labels may contain information about the position of the node representing

this expression in the tree, i.e. the height of the node;
– labels may contain the size of the omitted elements of the expression.

4.3 Summarising and browsing functionalities

The expression can be summarised fully by labeling all repeating subexpressions.
Expressions (subexpression) for which the maximum width or height values set
in the options are exceeded, are automatically summarised to comply with the
set options and then they can be seen gradually expanded.

The following operations can be performed on the expression:

– Full summarisation.
– Customised summarisation - by choosing only specific expressions to sum-

marise.
– Customised expansion - same as the above but choosing which expressions

to expand.
– Full expansion.

A demo for OpenMath Browser in the form of a Java applet can be accessed
at the following address:
http://staff.bath.ac.uk/masjhd/OMBrowser/OpenMathBrowser.html. A fuller
description is in [5]. The demo offers access to a set of examples which demon-
strate the main principles implemented for summarisation and browsing of math-
ematical expressions.

4.4 User feedback

Some informal user feedback was received with respect the functionalities and
appearance of OpenMath Browser. The application is still in prototype phase
and the detailed user evaluation is a future task.

However, the feedback was used to determine the set of default options:



– Colours are considered helpful for noticing repeated expressions.

– Some users find it better to first see the expression if full expanded form
and then decide which options to choose. Thus default values for maximum
width and height are set big.

– Suppressing the first occurrence is preferred rather than displaying it in a
box with the label as a subscript.

– The option of displaying information about the mathematical operation in
the labels is not found relevant.

Some additional notes from users were also taken into account although not
addressed at present: labels are considered long and odd; better error handling
is needed; better navigation from one part of the expression to others or to
additional definitions.

5 Examples

The first example is also the first example in the on-line demonstration version
of the tool.

Example 1. The solution to the general cubic equation

x3 + ax2 + bx+ c = 0. (1)

This can be presented as:

1

6

3

√
36ba− 108c− 8a3 + 12

√
12b3 − 3b2a2 − 54bac+ 81c2 + 12ca3

−
2b− 2

3a
2

3
√

36ba− 108c− 8a3 + 12
√

12b3 − 3b2a2 − 54bac+ 81c2 + 12ca3
− 1

3
a

and using Tschirnhaus transformation and substituting x by x − a
3 , we obtain

the following cubic equation:

x3 + b′x+ c′,

where b′ := b− 1
3a

2 and c′ := 2
27a

3− 1
3ba+c, and the solution can be represented

as:
1

6
T − 2b′

T
,

where

S :=
√

12b′3 + 81c′2,

T := 3
√

108c′ + 12S.



Fig. 1. Simple example (2): original expression.

Example 2. To demonstrate the tool we have chosen a rather simpler formula.

1

12

(
x

1
2 + x

) 1
2
(
−3 + 2 · x 1

2 + 8 · x
)

+
1

8
ln

(
1 + 2 · x 1

2 + 2
(
x

1
2 + x

) 1
2

)
(2)

Figure 1 presents this as our tool displays it, without any summarisation,
while Figure 2 presents the default fully-summarised behaviour. It is consistent
with the traditional mathematical “expression in α and β where α = . . . and
β = . . .”. Figure 3 shows an alternative summarised representation where each
expression is displayed in full the first time it is used. The choice of the first as
the default is based on user preference (see 4.4).

The reader is liable to think, with justification, that these are overkill, so the
next few figures (4-6) present variants in which (manually, but see the conclu-
sions) we have suppressed the summarisation of some of the smaller components.

Example 3. Figure 7 presents a long polynomial, without shared sub-expressions.
Here our strategy is to admit defeat and just print the first and last few terms
so that the new expression satisfies the maximum number of arguments re-
quirement, deferring the rest (the middle terms) until the next line, and so on
recursively, as shown in Figure 8. This behaviour is similar to the way long
polynomials are presented in Mathematica.

Example 4. Figures 9 and 10 present the original and the summarised form of
the Sylvester Matrix of the following polynomials in x:

p(x) =
(
y5 + y4 + y3 + y2 + y + 1

)
x3 +

(
y4 + y3 + y2 + y + 1

)
x2

+
(
y3 + y2 + y + 1

)
x+ (y2 + y + 1)

and

q(x) =

(
1

y4
+

1

y3
+

1

y2
+

1

y
+ 1

)
x2 +

(
1

y3
+

1

y2
+

1

y
+ 1

)
x+

1

y2
+

1

y
+ 1.



Fig. 2. Simple example (2): fully summarised expression with first occurrence of re-
peated subexpressions suppressed.

Fig. 3. Simple example (2): fully summarised expression with first occurrence of re-
peated subexpressions displayed.

Example 5. Figure 11 presents a large matrix of dimension 50× 50 too large to
display on the screen. In the case when both number of rows and columns exceed



Fig. 4. Simple example (2): partially expanded expression.

Fig. 5. Simple example (2): partially expanded expression.

the maximum number of arguments to be displayed1 the matrix is summarised
as shown on Figure 12.

However, when only the number of rows exceeds the limit, the default sum-
marising technique for long expressions is applied and the matrix is represented
as on Figure 13.

Example 6. The final example presents the combined approach to summarisation
of large mathematical expressions. The default summarising by labeling repeated
subexpressions is shown on Figure 14. This approach does not provide sufficiently

1 In OpenMath the matrix is represented as an application object of type matrix
containing 50 arguments (rowmatrix) each of which has 50 arguments as well.



Fig. 6. Simple example (2): partially expanded expression.

Fig. 7. Long polynomial: original expression.

efficient form of displaying the expression so that its structure is visible. We can
vary the maximum number of arguments allowed and obtain the result on Figure
15 and further on Figure 16 where the expression fits within the window.

Alternatively, we can try and vary the maximum height2 as well in which
case we obtain the representation on Figure 17.

6 Conclusion and future work

We have presented a highly customisable tool for displaying OpenMath expres-
sions with varying degrees of summarisation. The tool has a variety of options
— probably too many for the näıve user. We have not attempted in this project
to discover the “best” summarisation, which would require the “intelligence”
mentioned in the title. Some points are relatively obvious, others less so.

2 That is the height of the tree representation of the (sub)expressions.



Fig. 8. Long polynomial: summarised expression.

Fig. 9. Matrix: original.

√
Do not, by default, replace sub-expressions by longer labels, e.g. the 1

2 rep-
resented as E101 in figure 3.

√
Do not, by default, use ‘common’ sub-expressions which are no longer com-
mon when the full DAG has been formed, e.g. E300 in figure 2.

∗ We say “by default” in the above two because the user might be interested in
all common structure.

√
Not making explicit all the multiplication signs in the expression — the chal-
lenge lies, as always, in deciding which can be elided.

? Adjust the number of terms printed at either end of a “long” expression —
see Example 3 (Figures 7 and 8). Here again the key question is “how many



Fig. 10. Matrix: summarised form.

terms”. In some cases efficiency of representation is also a question of whether
to start from inside out or vice versa (e.g. start expanding Enull−2 rather
than Enull−0 in Figure 8).

? Better default behaviour for matrix displays — see Figures 9–13.

? Better user interface — accessible display area and interactive access to subex-
pressions (e.g. enable hyperlinks). Currently the library JLatexMath is used
for rendering LATEXwhich outputs an icon and activating the display area is
a future task.

? Allow more flexibility for summarisation and navigation — sometimes it may
be required to treat differently particular occurrences of expressions and
navigation via controls (e.g. next, previous, up, etc.) may be more efficient.

? Consider mathematical equality.

Acknowledgements: OpenMath Browser is developed as a part of the author’s
B.Sc. dissertation ([5]) under the supervision and with the support of Prof. James
Davenport.



Fig. 11. Matrix: original.

Fig. 12. Matrix: summarised form.

References

1. S. Buswell, O. Caprotti, D. P. Carlisle, M. C. Dewar, M. Gaetano, and M. Kohlhase.
The OpenMath Standard. Technical report, The OpenMath Society, 2004. http:

//www.openmath.org/standard/.
2. James H. Davenport. Equality in computer algebra and beyond. Journal of Symbolic

Computation, 34(4):259–270, 2002.



Fig. 13. Matrix: summarised form.

3. A. D. N. Edwards and R. D. Stevens. Mathematical representations: Graphs, curves
and formulas. In Proceedings of the INSERM Colloquium, Non-Visual Human
Computer Interactions, pages 181–193, 1993. http://reference.kfupm.edu.sa/

content/m/a/mathematical_representations__graphs__cu_2321607.pdf.
4. Bruce R. Miller. An Expression Formatter for Macsyma, 1995. http://citeseerx.

ist.psu.edu/viewdoc/summary?doi=10.1.1.50.9838.
5. Ivelina Stoyanova. Intelligent Summarising and Browsing of Mathematical Expres-

sions. B.Sc. Dissertation, Department of Computer Science, University of Bath,
2010.



Fig. 14. Long expression: default summarised form.



Fig. 15. Long expression: default summarised form with reduced number of terms
displayed.



Fig. 16. Long expression: default summarised form with reduced number of terms
displayed (1).



Fig. 17. Long expression: Combined summarisation.


