
User Interface Design for Geometrical
Decomposition Algorithms in Maple

Changbo Chen1, James H. Davenport2, John May3, Marc Moreno Maza1,
Bican Xia4, Rong Xiao4, and Yuzhen Xie5

1 Department of Computer Science, University of Western Ontario
changbo.chen@gmail.com,moreno@csd.uwo.ca

2 Department of Computer Science, University of Bath
J.H.Davenport@bath.ac.uk

3 Maplesoft jmay@maplesoft.com
4 School of Mathematical Sciences, Peking University

{xbc@math.pku.edu.cn,akelux@gmail.com}
5 CSAIL, Massachussets Institute of Technology, Cambridge MA, USA

yxie@csail.mit.edu

Abstract. As computer algebra develops, it handles more sophisticated
objects, many of which have no precise parallel in conventional mathe-
matics, since mathematicians have handled the concepts on an ad hoc
basis. Furthermore, by definition, computer algebra must handle these
objects algorithmically, and present them to the user. This is particu-
larly a challenge when the user may not be intimately familiar with the
object, and all the special cases that may occur.
We present various issues connected with this in the context of equation
solving, and show how the ’piecewise’ construct of Maple [3] can be
employed to build representations of solution objects that:

1. Are intuitive in simple cases;
2. Use familiar base constructs;
3. Allow ‘delayed evaluation’ of difficult special cases, which the user

may not actually be interested in.

1 Introduction

Algorithms decomposing geometrical entities into meaningful components chal-
lenge the designers of computer algebra systems for a variety of reasons.

(i) The user’s intuition is honed on simple examples, e.g. the solution to the
equations is a line, often with rational coefficients. The user may never
have seen the full generality of such decompositions. However, we should
not invent an entirely new language, but should rely on techniques that
the user does understand.

(ii) The output of these algorithms may consist of components of different
mathematical nature (points, curves, surfaces, etc.). Such a description is
usually given largely in words, e.g. (for Whitney’s umbrella)



“the solutions to x2 = y2z are the parametric plane x = uv; y = u;
z = v2 together with the negative z-axis.”

Providing type information and structured results is certainly important
for the expert user in order to analyze the output. On the other hand,
over-structured results may discourage the non-expert user.

(iii) The algebraic expressions encoding the output components may be huge
and the user will almost certainly not wish to see them in the first place,
if at all. Even with more straight-forward algorithms, computer algebra
systems are guilty of showing the user the trees, rather than the wood. For
example, since the usual definition of ‘Gröbner base’ is “a set of polynomials
such that . . . ”, computer algebra system designers insist on showing the
user the whole polynomials, rather than just the leading monomials.

(iv) Even worse, some of these objects may be totally useless to the user as they
correspond to degenerate cases that are not of practical interest. The calcu-
lation of those degenerate cases may also be dramatically more expensive.
However, the algorithm has no way of knowing which, if any, the user will
want, and the algorithm designer will mislead the user if it doesn’t show
at least the existence of these solutions. We therefore use Maple’s facility6

to hold computations “inert” until the user explicitly asks for their value
in order to represent the existence of these degenerate cases.

In this paper, we consider three kinds of such decomposition algorithms, with
different challenges regarding their user interface in a computer algebra system.
The first algorithm, studied in Sections 2, solves systems of polynomial equations
and inequations, with parameters. Because it is based on the algebraic concept
of triangular decomposition and inspects all possible behavior of the solutions de-
pending on the parameters, the output of this algorithm is called Comprehensive
Triangular Decompositions (CTD) of the input system.

On an input set of polynomials in n variables, the second algorithm, see
Sections 3, decomposes the real space Rn into cells such that the sign of each
input polynomial does not change in each cell. Because of the shape of those cells,
this second algorithm is called Cylindrical Algebraic Decomposition (CAD).

The third algorithm, discussed in Section 5 and called Real Triangular De-
composition (RTD) takes as input a system of polynomial equations, inequations
and inequalities. The output is based again on the algebraic concept of trian-
gular decomposition. In contrast to the CTD, no parameters are involved and
the purpose is to determine which solution components have points with real
coordinates. Both RTD and CAD face additional challenges due to the inher-
ent difficulties of manipulating parametric real (algebraic) numbers exactly: see
Section 4.

To a first approximation, each of these three algorithms produces a list of
components such that the following two conditions hold:

1. each solution of the input system belongs to at least one component, and
6 http://www.maplesoft.com/support/help/view.aspx?path=file06209#value de-

scribes this facility.



2. each point in each component is a solution of the input system.

By its “comprehensive nature”, a CTD is in fact a family of decompositions of the
input system rather than a single decomposition; each of these decompositions is
associated to a case (or constructible set) in the parameter space. It is therefore
desirable to organize the equations and inequations encoding those cases in a
synthetic way such that for a given parameter value the user can easily access
the corresponding (specialized) decomposition. We show in this paper how the
’piecewise’ construct of Maple helps achieving this goal.

In the case of RTD, we propose a “lazy evaluation” model, where only the
“main components” are evaluated in the first place. The calculations of the
other components are performed only if the user wants too. We rely again on
the piecewise construct of Maple together with the existing features of this
system for delaying evaluations. While delayed evaluation is not new in computer
algebra. it has generally been used for infinite objects such as Taylor series [9],
where it is a necessity. Here, we are using it for two reasons:

– the cost of computing the special cases may greatly outweigh the cost of
computing the generic case;

– the size of the special cases may drown the generic case.

Between the CTD and the RTD cases, we apply similar ideas to CAD, since this
algorithm supports applications where a complete decomposition is required in
the first place.

These three geometrical algorithms decompose systems of polynomial equa-
tions, inequations and inequalities. The components that they compute have a
more complex structure (or representation) than those occurring in algebraic de-
composition algorithms, such as primary decomposition of polynomial ideals. In
this latter case a component is simply given by a system of generators (generally
a Gröbner basis) and no inequations and inequalities are involved.

The decomposition algorithms implemented by the computer algebra systems
such as CoCoA, MacCaulay, Magma, Singular are only primary decomposition
and its variants (prime decomposition, equidimensional decomposition, trian-
gular decomposition in dimension zero). Several implementations of CAD are
available in dedicated C libraries (QEPCAD) or in the computer algebra sys-
tems Mathematica and Reduce proposing interfaces specific to CAD and which
do not adapt to CTD or RTD. In our work, there is a desire of standardizing
those different geometrical decompositions, as much as possible.

2 Comprehensive Triangular Decompositions

Consider the parametric polynomial system {vxy + ux2 + x, uy2 + x2}, where
x, y are unknowns and u, v are parameters. The näive user would probably try
to handle this system in Maple with:

> solve({v*x*y+u*x^2+x, u*y^2+x^2},{x,y});



[
{x = 0, y = 0} ,

{
x = −

(
v
(
−v + u

√
−u
)

u3 + v2
+ 1

)
u−1, y =

−v + u
√
−u

u3 + v2

}
,

{
x = −

(
−

v
(
v + u

√
−u
)

u3 + v2
+ 1

)
u−1, y = −v + u

√
−u

u3 + v2

}]
This answer is useful, for some values of the parameters, but not for u = −1, v =
1 for example. If the user will be evaluating the solution at many values of the
parameters (not known before-hand), then an answer that specializes correctly
at all values would be preferred.

In the current version of Maple, namely release 13, there are tools available
to experts to compute the solutions for all possible parameter values. One way
to do this with is with a Comprehensive Triangular Decomposition [4], which
is done below. We signal the split between parameters and indeterminates with
the argument ‘2’, meaning that R is to be viewed with two variables (x and y)
with the rest (u and v) being parameters (see also point C in the “further work”
section).

> R := PolynomialRing([x,y,u,v]):

> ctd := ComprehensiveTriangularize([v*x*y+u*x^2+x, u*y^2+x^2], 2, R);

ctd := [regular_chain, regular_chain, regular_chain, regular_chain], [

[constructible_set, [1, 3]], [constructible_set, [1, 4]],

[constructible_set, [1, 2]]]

> seq(Info(ctd[2][i][1], R), i=1..nops(ctd[2]));

2 3 2 3

[[], [u, v + u ]], [[v + u ], [u]], [[u], [1]]

> map(Equations, ctd[1], R);

2 2 2 3 2

[[x, y], [x, u], [(v y + 1) x - u y , 1 + (v + u ) y + 2 v y],

2 2 2 3

[(v y + 1) x - u y , 1 + 2 v y, v + u ]]

Observe that the output is a structured object from which the expert can
extract the necessary information, as shown by the last two commands: the first
command extracts the cases (given by constructible sets) which form a partition
of the u, v-parameter space, and the second one extracts the components solving
x, y (by so-called regular chains). The way to read the output is then as follows:
for each case, the corresponding components have their indices is the list next
to the case.

For the work presented in this paper, we have implemented a new inter-
face7 to the command ComprehensiveTriangularize which produces the out-
put below. The relation between each constructible set and its associated
7 Of course, we could have written a special-purpose printer to display the results

shown above in a more hierarchical fashion, but one point of this paper is that
existing tools can produce better output, if properly enlisted.



regular chain’s is shown directly using a piecewise function in equation (1),
which is produced with Maple’s latex command (hand-edited for line breaks
only).

[{x = 0, y = 0} ,
{

(vy + 1) x− u2y2 = 0,

1 +
(
v2 + u3

)
y2 + 2 vy = 0,

v2 + u3 6= 0, vy + 1 6= 0
}

] And
(
u 6= 0, v2 + u3 6= 0

)
[{x = 0, y = 0} ,

{
1 + 2 vy = 0, v2 + u3 = 0,

(vy + 1) x− u2y2 = 0, 2 v 6= 0, vy + 1 6= 0
}

] And
(
v2 + u3 = 0, u 6= 0

)
[{x = 0, y = 0} , {u = 0, x = 0}] u = 0

(1)

This can be further processed to explicit solutions in the style of solve.

sol :=



[{x = 0, y = 0},
{x = − u(−v2+2 vu

√
−u+u3)

v3
√
−u+v

√
−uu3+u2v2+u5 , y = −v+u

√
−u

v2+u3 },

{x = − u(v2+2 vu
√
−u−u3)

v3
√
−u+v

√
−uu3−u2v2−u5 , y = −v+u

√
−u

v2+u3 }] u 6= 0 and v2 + u3 6= 0

[{x = 0, y = 0}, {x = u2

2 v2 , y = −1
2 v }] u 6= 0 and v2 + u3 = 0

[{x = 0, y = y}] u = 0
(2)

Above each of the three cases (or constructible sets) on the right hand,
the solutions of the input system are continuous multivalued functions of the
parameters.

We note that, for a given parameter value, one could easily access the corre-
sponding (specialized) solution by use of Maple command eval and the existing
treatment of piecewise-defined functions [3]. So, with this structure, the user can
easily specialize the solution correctly at any complex number:

> eval(sol, {u=1, v=1});
{x = 0, y = 0}, {x = -1/2 - 1/2 I, y = -1/2 + 1/2 I},
{x = -1/2 + 1/2 I, y = -1/2 - 1/2 I}

3 Cylindrical Algebraic Decomposition

The original paper [6, p. 149] defined a cylindrical algebraic decomposition as
an indexed sequence of subsets, known as cells, of Rn. In practice, of course,
one has the formulae defining the sets, rather than the sets themselves, and it
is normal to have a sample point in each cell. If we follow this definition, and
represent the formulae by regular chains [5], we end up with a decomposition
such as Figure 1, which is a decomposition of R2 induced by xy − 1.

While relatively compact, this is almost unreadable, even to one versed in
the theory. Simply by extracting the cases, and constructing a corresponding
expression with piecewise, we obtain Figure 2.

Note that we are no longer explicitly showing the cell indices, as they are
implicit in the nested piecewise structure, e.g. the first row has to be [1,1].



Fig. 1. Original CAD

[[[1, 1], [regular_chain, [[-1, -1], [-2, -2]]]], [[1, 2], [regular_chain,

[[-1, -1], [-1, -1]]]], [[1, 3], [regular_chain, [[-1, -1], [0, 0]]]], [[2,

1], [regular_chain, [[0, 0], [0, 0]]]], [[3, 1], [regular_chain, [[1, 1],

[0, 0]]]], [[3, 2], [regular_chain, [[1, 1], [1, 1]]]], [[3, 3],

[regular_chain, [[1, 1], [2, 2]]]]]

Fig. 2. Reformulated CAD: latex(CylindricalAlgebraicDecompose(F, R))

{
[regular chain, [[−1,−1], [−2,−2]]] x < y−1

[regular chain, [[−1,−1], [−1,−1]]] x = y−1

[regular chain, [[−1,−1], [0, 0]]] y−1 < x

y < 0

[regular chain, [[0, 0], [0, 0]]] y = 0{
[regular chain, [[1, 1], [0, 0]]] x < y−1

[regular chain, [[1, 1], [1, 1]]] x = y−1

[regular chain, [[1, 1], [2, 2]]] y−1 < x

0 < y

4 Real Roots of Polynomials

Unfortunately, Figure 2, while correct, is an example of problem (i) mentioned in
the introduction: in general the boundary cases defining the ‘piecewise’ construct
will not be simple rational numbers, but rather the (real) roots of polynomials.
For univariate polynomials, there are a variety of ways of representing such roots.

1. Via an approximation, e.g. “the root of x2 − 2 near 1.5”: Maple’s
RootOf(x^2-2,x,1.5)

2. Via a bounding interval, e.g. “the root of x2 − 2 between 1 and 2”: Maple’s
RootOf(x^2-2,x,1..2).

3. Via the signs of derivatives (often described as Thom’s Lemma [7]), e.g. “the
root of x2−2 where 2x is positive”: this encoding is not supported in Maple.

4. As the i-th complex root ordered in some way, e.g. by increasing argument,
as in “the first root of x2 − 2”: Maple’s RootOf(x^2-2,x,index=1).

Any of these would suffice for polynomials in one variable. However, the poly-
nomial p might be in several variables, e.g. a root in y of a polynomial in x and
y, where x lies in a certain region. None of the above methods will then suffice.

*1. The same numeric approximation for y might be close to different branches
of p for different x-values.

*2. The same bounding interval approximation for y might be close to different
branches of p for different x-values.

*3. The signs of the derivatives might change as we follow a single branch of p.
*4. The order of arguments, or whatever else is used as our order on the complex

plane, might change as we follow a single branch of p.



Hence we have been led to suggest extending Maple by a new construct.

5. As the i-th real root ordered in some way, e.g. by increasing value, as in “the
second real root of x2 − 2”: Maple’s RootOf(x^2-2,x,index=real[2]).

It is a fortunate feature of Maple’s design that this works already, in the sense
that it is recognized as a root of the polynomial. Nevertheless, work will need to
be done to extend, e.g. evalf, to understand it properly.

The reader may protest that there is an objection here too.

*5. The number of real roots “before” ours might change as we follow a branch
of p, and, for example,the first root might suddenly become the third.

In general this would be a valid objection, but it is a defining characteristic of a
cylindrical algebraic decomposition that this cannot happen within a given cell,
and hence this definition is well-founded in our application.

As an example of this construct, we can see the following description of a
CAD induced by the polynomial y2 − xy − 1.

[regular chain, [[0, 0], [−2,−2]]] y < RootOf( Z2 − x Z − 1, index = real[1])
[regular chain, [[0, 0], [−1,−1]]] y = RootOf( Z2 − x Z − 1, index = real[1])

And(RootOf( Z2 − x Z − 1, index = real[1]) < y,
[regular chain, [[0, 0], [0, 0]]] y < RootOf( Z2 − x Z − 1, index = real[2]))
[regular chain, [[0, 0], [1, 1]]] y = RootOf( Z2 − x Z − 1, index = real[2])
[regular chain, [[0, 0], [2, 2]]]) RootOf( Z2 − x Z − 1, index = real[2]) < y

The reader may think that this is a complicated construction, but a trivial
change to y^2-x*y+1 makes the output too large for this paper, with 17 cases
(5 for x < −2, 3 for x = −2, 1 for −2 < x < 2, 3 for x = 2 and 5 for x > 2) to
be considered. The plot is in figure 3.

5 Real Triangular Decomposition

The question “what real solutions does a system of polynomial equations have?”
does not permit of a simple answer, in general. For an arbitrary input system of
equations, inequations and inequalities given by multivariate polynomials, one
may wish to describe all solutions of this system which have real coordinates. If
there are only finitely many solutions with complex coordinates satisfying the
equations and inequations, i.e. we are in complex dimension zero, then it is easy,
in principle, to detect which ones have real coordinates, and among those, which
ones satisfy the inequalities. The output of such process is a list of points with
real coordinates, suitably encoded.

Our current solution in the case of higher (complex) dimension mimics this:
computing a complex triangular decomposition first, and then analyzing the real
solutions for each regular system thus produced.

Before considering the general case, let us consider Whitney’s umbrella x2−
y2z = 0 with the variables in the order x > y > z. Our code produces the



Fig. 3. Plot for 17-cell CAD

following construct,
[
{
x2 − y2z = 0, 0 < z

}
] And (y 6= 0, z 6= 0)

%RealTriangularize
(
[x2 − y2z, y], [x, y, z], {}

)
And (z 6= 0, y = 0)

%RealTriangularize
(
[x2 − y2z, z], [x, y, z], {}

)
And (y 6= 0, z = 0)

%RealTriangularize
(
[x2 − y2z, y, z], [x, y, z], {}

)
otherwise

(3)

where all the lower-dimensional cases are left unevaluated. If we force evaluation
(using Maple’s value command), we get

[
{
x2 − y2z = 0, 0 < z

}
] And (y 6= 0, z 6= 0)

{x = 0, y = 0, z = z} And (z 6= 0, y = 0)
{x = 0, y = y, z = 0} And (y 6= 0, z = 0)
{x = 0, y = 0, z = 0} otherwise

. (4)

Here the first line corresponds to the parametric plane quoted in the intro-
duction, and the second to the “negative z axis”. The third component is the
fold in the parametric plane, and the fourth the origin, which is the intersection
of the components.

Let us now consider the general case. Let us denote by F,H, P the sets
of polynomial defining the equations, inequalities and inequalities of the input
system. If these polynomials involve n ordered variables x1 < · · · < xn, then a
solution is any point r = (r1, . . . , rn) with real coordinates such that f(r) = 0
for all f ∈ F , h(r) 6= 0 for all h ∈ H and p(r) > 0 for all p ∈ P .



A first idea for solving this system is “simply” to compute a CAD C of Rn

such that each polynomial of F ∪H ∪P is sign-invariant in each cell C of C.
Obviously, this will do much more than we need, since we are not interested,
for instance, in the cells where the polynomials of F are strictly negative or
strictly positive. This “overkill” is even more obvious in the extreme case where
no points satisfy simultaneously all the equations given by F .

A second idea is to proceed in two steps

1. Solve the system of equations given by F over the complex numbers, for
instance using triangular decomposition.

2. Filter out these complex solutions (for instance using CAD) to detect those
satisfying the inequations and inequalities given by H and P , respectively.

At this point, practical consideration have to be made. Indeed, in many
applications, one may first want to obtain the “most likely” or “generic” solutions
of a system while keeping the possibility of producing the other solutions later,
if necessary. Such motivation has led to weaker versions of the notion of a CAD.

To serve this objective, we propose to combine the piecewise tools of Maple
together with its ability of delaying evaluations. Let us see a more interesting
example. If we want the real solutions of {x2 + y + z − a = 0, x + y + z2 = 0},
we can call

sols := RealTriangularize([x^2+y+z-a, x+y+z^2], [x, y, z, a])

and get
[{x + y + z2 = 0, y2 + (1 + 2z2)y + z − a + z4 = 0
0 < −z + a + z2 + 1/4}] −4z + 4a + 4z2 + 1 6= 0
%RealTriangularize([x + y + z2,
y2 + (1 + 2z2)y + z − a + z4,−4z + 4a + 4z2 + 1], [x, y, z, a], {}) otherwise

i.e. some solutions are obtained when −4z + 4a + 4z2 + 1 6= 0, but determining
what happens when −4z + 4a + 4z2 + 1 = 0 requires a (potentially more costly)
recursive call, so this has been made inert awaiting explicit evaluation. One could
use Maple command value to explicitly call RealTriangularize and get{−1 + 2x = 0, 1 + 4y + 4z − 4a = 0,−4z + 4a + 4z2 + 1 = 0, a < 0} a 6= 0
%RealTriangularize([−1 + 2x, 1 + 4y + 4z − 4a,
−4z + 4a + 4z2 + 1, a], [x, y, z, a], {}) otherwise

Again, a recursive call is delayed and by value one obtains all the solutions
represented by a nested piecewise function
{x + y + z2 = 0, y2 + (1 + 2z2)y + z − a + z4 = 0
0 < −z + a + z2 + 1/4} −4z + 4a + 4z2 + 1 6= 0{−1 + 2x = 0, 1 + 4y + 4z − 4a = 0,
−4z + 4a + 4z2 + 1 = 0, a < 0} a 6= 0
{a = 0, x = 1/2, y = −3/4, z = 1/2} otherwise

otherwise



6 Further Work

This paper has merely started the discussion of the best way to represent geo-
metrical decompositions such as CTD, CAD, RTD. Several questions remain.

A. More work needs to be done to make RootOf(p,x,index=real[i]) into a
better Maple citizen.

B. The passage from (1) to (2) is currently not automatic. In many cases it could
be automated, but there are interesting examples where the logic behind
comprehensive triangular decompositions is more powerful than that behind
solve. One limb of (2) is{

x =
u2

2 v2 , y =
−1
2 v

}
for u 6= 0 and v2 + u3 = 0, (5)

where there is an apparent problem for a back-substitution phase if v = 0:
however this cannot happen because u 6= 0 and v2 + u3 = 0, so v 6= 0 is
forced.

C. When we computed (1), we used R := K[x, y, u, v] with the argument ‘2’
signifying that this was really K[x, y; u, v] with u and v being parameters.
In fact, though, we have also ordered u and v, as required by Triangular
Decomposition, though this order is extrinsically meaningless. If we exchange
u and v we get the following.

[{x = 0, y = 0} ,
{u = 0, x = 0}] And (v = 0, u = 0)
[{x = 0, y = 0} ,{

1 + 2 vy = 0, (vy + 1) x− u2y2 = 0,

v2 + u3 = 0, 2 v 6= 0, vy + 1 6= 0
}

] And
(
v2 + u3 = 0, u 6= 0

)
[{x = 0, y = 0} ,{

(vy + 1) x− u2y2 = 0, 1 +
(
v2 + u3

)
y2 + 2 vy = 0,

v2 + u3 6= 0, vy + 1 6= 0
}

] And
(
u 6= 0, v2 + u3 6= 0

)
(6)

Since v is the leading parameter, this can be easily specialised with

simplify(eval(%,v=0));

to the following.{
[{x = 0, y = 0} , {0 = 0, x = 0}] u = 0
[{x = 0, y = 0} ,

{
1 + y2u3 = 0, x− u2y2 = 0, u3 6= 0

}
] otherwise (7)

The same problem occurs in Real Triangular Decomposition, where we have
asked the user to specify the variable ordering. Much of the time, the user
will have a clear idea of what ordering is required, but equally much of the
time the user will want the “best” order. Two examples of the same problem
with different orders are given above, as (3) (or (4)) and (9)/(10), which are
to be contrasted with the description in words given in the introduction.



It is far from clear what “best” means, though the model of simplification
in [2] would imply “shortest”. There can be radical differences, ranging from
polynomial to doubly-exponential, in the size of the output, depending on
the order chosen [1]. One promising short-cut for deciding the best order is
described in [8]. However, such studies are beyond the remit of this paper,
which is to look at the user interface to what is currently being produced. It
would be nice, but beyond the scope of this paper, for the system to choose
the “best” order of these parameters.

D. As seen in (7), the interaction between piecewise and simplify could be
improved to drop conditions such as the last u3 6= 0. Equally, we could delete
equations which are in the parameters only, reducing (1) to (8).

[{x = 0, y = 0} ,
{

(vy + 1) x− u2y2 = 0,

1 +
(
v2 + u3

)
y2 + 2 vy = 0, vy + 1 6= 0

}
] And

(
u 6= 0, v2 + u3 6= 0

)
[{x = 0, y = 0} ,

{
1 + 2 vy = 0,

(vy + 1) x− u2y2 = 0, vy + 1 6= 0
}

] And
(
v2 + u3 = 0, u 6= 0

)
[{x = 0, y = 0} , {x = 0}] u = 0

(8)

E. What if the triangular decomposition at the core of RealTriangularize leads
to multiple regular chains? Simply returning a sequence of piecewise con-
structs does not really help. Even in simple cases, as occurs in Whitney’s
umbrella x2 − y2z = 0 with the variables in the order z > y > x, we get the
two regular chains (9, which is then displayed as a piecewise construct) and
(10, which in this case is uniform){

[
{
−x2 + y2z = 0

}
] y 6= 0

%RealTriangularize
(
[−x2 + y2z, y], [z, y, x],

{
y2
})

otherwise
, (9)

{x = 0, y = 0, z = z} (10)

This is just about comprehensible, but clearly this does not scale, and the
“pruning” issue referred to above becomes more acute.
It would be possible to approach the decomposition in other ways, e.g. by
treating algebraically independent variables as parameters, and doing para-
metric solving in the first instance, but this is a subject of further research.

F. It could be argued that (4) is redundant, and the equational constraints on
the free variables do not need to be repeated. This would give us the following

[
{
x2 − y2z = 0, 0 < z

}
] And (y 6= 0, z 6= 0)

{x = 0} And (z 6= 0, y = 0)
{x = 0} And (y 6= 0, z = 0)
{x = 0} And (y = 0, z = 0)

(11)

which could then be further simplified to{
[
{
x2 − y2z = 0, 0 < z

}
] And (y 6= 0, z 6= 0)

{x = 0} zy = 0
. (12)



7 Conclusion

As can be seen from the CTD, CAD, RTD discussions, by using the existing
piecewise constructions to describe these geometric concepts, one can design
some nice and simple user-interfaces to carry out complex computation of com-
plicated objects, especially for non expert end-users. The use of inert values,
another existing concept, allows one to hide the details of complicated special
cases, while not hiding their existence. Because they are inert values, the value
command means the user has access to the details if required.

We are sure that such idea can be applied to some other concepts, like real
root classification [10, 11], to build more appropriate user-interfaces from existing
components.

References

1. C.W. Brown and J.H. Davenport. The Complexity of Quantifier Elimination and
Cylindrical Algebraic Decomposition. In C.W. Brown, editor, Proceedings ISSAC
2007, pages 54–60, 2007.

2. J. Carette. Understanding Expression Simplification. In J. Gutierrez, editor, Pro-
ceedings ISSAC 2004, pages 72–79, 2004.

3. J. Carette. A canonical form for piecewise defined functions. In C.W. Brown, editor,
Proceedings ISSAC 2007, pages 77–84, 2007.

4. C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and W. Pan. Comprehensive
Triangular Decomposition, volume 4770 of Lecture Notes in Computer Science, pages
73–101.

5. C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing Cylindrical Algebraic
Decomposition via Triangular Decomposition. To appear in J. May, editor, Proceed-
ings ISSAC 2009, ACM Press, New York. http://arxiv.org/abs/0903.5221.

6. G.E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic
Decomposition. In Proceedings 2nd. GI Conference Automata Theory & Formal
Languages, Springer Lecture Notes in Computer Science 33, pages 134–183, 1975.

7. M. Coste and M.F. Roy. Thom’s Lemma, the Coding of Real Algebraic Numbers
and the Computation of the Topology of Semi-Algebraic Sets. J. Symbolic Comp.,
5:121–129, 1988.

8. A. Dolzmann, A. Seidl, and Th. Sturm. Efficient Projection Orders for CAD. In
J. Gutierrez, editor, Proceedings ISSAC 2004, pages 111–118, 2004.

9. A.C. Norman. Computing with Formal Power Series. ACM Transactions on Math-
ematical Software, 1:346-356, 1975.

10. L. Yang, X. Hou, and B. Xia. A complete algorithm for automated discovering of
a class of inequality-type theorems. Science in China, Series F, 44(6):33–49, 2001.

11. L. Yang, B. Xia. Real solution classifications of a class of parametric semi-algebraic
systems. In: Algorithmic Algebra and Logic — Proceedings of the A3L 2005 (A.
Dolzmann, A. Seidl, and T. Sturm, eds.), pp. 281289. Herstellung und Verlag,
Norderstedt (2005).


