
(2.2)(2.2)

(2.1)(2.1)

Maple's 2-D Math Interface

Paulina Chin, Maplesoft
June 24, 2009

 Introduction
Maple is a software package for mathematical manipulation and modelling. Originally a computer
algebra system, it has expanded into a tool for mathematicians, scientists and engineers and
encompasses both symbolic and numeric computational capabilities. In recent years, there has been
much development in Maple's interface, with a focus on tools for creating interactive Mathematical
documents.

Maple allows users to enter executable standard math notation with its 2-D math interface. An older
command-line-style 1-D math interface is also available. This paper will present an overview of the
2-D math system and discuss some of the technical challenges associated with both parsing and
displaying typeset math expressions.

2-D Math in Maple

Maple provides the ability to display the output of computations as typeset math. It also allows a user
to enter the commands as typeset math, and then it parses and executes them. Below is an example of
computing an integral using 1-D and 2-D input.

int(x/(x^3-1), x);

There are various ways of entering 2-D math as input. The easiest way is to select the 2-D input
mode, and the characters will be typeset as you type. For example, typing 'x', '^' and '2' in sequence

results in appearing on the input line. You can also select output that is already in typeset form and
then copy and paste it into an input line, or you can enter an expression in 1-D form, select it and
convert to 2-D form.

For larger and more complicated expressions, Maple provides two useful tools to facilitate the input
process, and both are shown in the screenshot below. First, there is a command-completion facility
which provides both 1-D and 2-D versions of Maple commands. There is also a large collection of
palettes, two of which are shown in the screenshot. The user simply clicks on the palette entry to
insert it in a document and then tabs through the fields to fill the placeholders with the desired values
or expressions.

(3.4)(3.4)

(3.2)(3.2)

(3.1)(3.1)

(3.3)(3.3)

Dealing with Ambiguity
The biggest challenge with parsing mathematics notation is dealing with ambiguous expressions, or
at least ones that look ambiguous to the user even if there are set rules for dealing with them in the
parser. The 1-D command-line style Maple syntax is unambiguous but generally difficult for users to
learn, as it often bears little resemblance to real mathematical notation.

The most common problems come from the use of implicit multiplication. The first example below is
treated as a function call while the second is considered a multiplication.

Maple has specific documented rules describing when implicit multiplication is assumed and when it

(3.5)(3.5)

(3.6)(3.6)

is not. In addition, we advise users to use explicit multiplication (a dot operator) if there is any
chance of ambiguity. Even so, it is easy for users to forget the rules or not see them in the first place.

Other problems arise from attempts to be compatible with the existing Maple 1-D language. For
example, angle brackets can be used to create vectors. The following expression, " ", is
parsed as a sequence of inequalities, but a user might expect this to mean the product of x, a vector
and y.

A partial solution to the problems of ambiguity is to allow some user customization of the parsing
and typesetting facilities. Maple provides the ability to adjust a subset of the rules through its
Typesetting Rule Assistant, shown above. For example, in the 1-D Maple language, 2(x) is parsed as

(3.9)(3.9)

(3.10)(3.10)

(3.8)(3.8)

(3.7)(3.7)

a call to the constant function 2, and there is no ambiguity since implicit multiplication is not
supported by 1-D math. However, users of the 2-D language almost always expect 2(x) to mean 2
times x. This is the default behaviour, but the Typesetting Rules Assistant allows you to change the
parse rule to respect the original 1-D meaning.

Maple also tries to use context information whenever possible to decide how certain operators should
be parsed. Maple offers a number of packages that users can load to get quick access to its
commands. An expression might be parsed differently with the Physics package or VectorCalculus
package loaded. The parsing is often based on the types associated with the inputs. For example, if A
and B are known to be matrices, then A B results in a call to the routine for matrix multiplication. A
difficulty arises when the data types cannot be determined at parse time, but only later at evaluation
time. In these situations, Maple attempts to delay commiting to a parsed result until evaluation takes
place.

An ongoing challenge is to find the right balance between representing both "mathematics" and
"commands". In Maple, users want the expressions to look like real mathematics as one would find in
a textbook. However, for the most part, they are interested in executing a Maple command to produce
a result. An example of this difficulty is representing a line integral over a path. How can we capture
all the information in the single LineInt command in a 2-D representation that looks similar to how
mathematicians would write it?

The example below shows the difference between exact and numeric integration. Currently, there is
no simple way to provide the 'numeric' option with 2-D input.

0.3502469061

Saving Semantic Information
Confusion often arises from two different objects that look identical in mathematical notation. For
example, vector elements look the same as subscripted names even though they are fundamentally
different objects. Below, the first was created from a palette entry for an indexed variable and is

equivalent to v[3]. The second was created as an "atomic identifier" and is the name consisting of v
with a subscript 3.

(4.4)(4.4)

(4.2)(4.2)

(4.6)(4.6)

(4.5)(4.5)

(4.3)(4.3)

(4.1)(4.1)3

v3

Maple offers two modes for typesetting display, standard and extended. In the extended mode, it
attempts to save more semantic information in a displayed expression so that it can be reparsed
correctly after a copy-and-paste operation.

0.9384698072

0.9384698072

The typeset expression for the BesselJ function includes semantic information that allows the J to be
identified as BesselJ, and not as an ordinary J, after copy, paste and reparse. The Maple internal form
of this typeset expression is shown below.

mrow(msub(mi("J", fontstyle = "normal", msemantics =

"BesselJ"), mn("0")), mo("⁡"), mfenced(mi("x")))

A challenge, which we hope to address in future versions of Maple, is to let users see easily the
meaning of typeset expressions. Ideally, users should be able to immediately tell the difference
between the BesselJ function, and J with subscript 0 without having to resort to indirect

means.

Internal Representation

Maple's internal form for typeset expressions, referred to as TypeMK, is based on presentation
MathML. TypeMK supports most of the elements of MathML and includes a small number of
additions. The most significant of these is the msemantics attribute, as seen in the BesselJ example,
which Maple uses to add content information in a limited way. The TypeMK representation of the
integral used in a previous example is shown below.

(5.1)(5.1)

mrow(msubsup(mo("∫"), mn("1"), mn("2")), mfrac(mi("x"),

mrow(msup(mi("x"), mn("3")), mo("+"), mn("1"))), mspace

(width = "0.3em"), mo("ⅆ"), mi("x"))

When a user enters a 2-D expression, it is parsed initially by the GUI system to generate a simplified
TypeMK form. In a second pass of the parser, context information is used and user settings are
checked to refine the TypeMK result, and semantic information is added at this point, if any is
available. This second parsing phase is done by the Maple library, which contains most of Maple's
mathematical functionality and is written in the Maple language itself. During this phase, an internal
representation of the expression or command that is understood by the Maple kernel is also generated
and subsequently executed. The internal form of the integral used in the above example is shown
below.

Conclusions
Maple's 2-D math system allows users to enter expressions and see the results of computations in
natural mathematical notation. This helps facilitate the use of Maple, without requiring the time
normally needed to master the traditional command-line language. It also allows users to quickly and
easily create technical documents containing complicated mathematical expressions.

However, there are still many challenges associated with parsing and displaying typeset math
correctly and efficiently. These include resolving ambiguous situations, storing and using semantic
information, and maintaining as much compatibility with the 1-D language as possible (so that long-
time users can make an easy transition to the new language). In future work, we will continue to
address these issues, as well as improve the interface so that users can enter mathematical
expressions with as much ease as possible.

Acknowledgements
I would like to acknowledge the assistance of my Maplesoft colleague, Allan Wittkopf, in the
preparation of this paper.

