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ABSTRACT 
Computer Algebra Systems (CAS) have been designed to 
aid users by automating a class of mathematical 
computations.  However, despite widespread availability, 
little is known about how usable, useful, and used 
computers in general and CAS in particular are in 
mathematicians’ work.  Recently we presented a first 
examination of the overall work process of expert 
mathematicians and of the drawbacks of CAS in supporting 
this work process [4].  In this paper, we expand our 
discussion of mathematicians' work practices by 
highlighting two primary tasks -- problem solving and 
project management -- and discussing the different artifacts 
used during these primary tasks.  We also show how a 
better understanding of mathematicians work practices can 
lead to the design of computational tools that better support 
mathematical problem solving.  The study results reported 
here and in our recent work are the first analyses of how 
mathematicians work and of why current computational 
tools have only narrow utility in their work. 
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INTRODUCTION 
Mathematical problem solving is an expert task involving 
many different tools.  For example, mathematicians use pen 
and paper to depict steps in their problem solving process.  
They use whiteboards or blackboards to describe problems 
and explore potential solutions with collaborators.  They 
use Computer Algebra Systems (CAS) (e.g.  Maple, 
Mathematica) or Numerical Computing Packages (e.g. 
MATLAB) to perform difficult or lengthy calculations.  
Finally, they use mathematical equation generation tools  
such as LaTeX to publish and disseminate novel 
mathematical proofs they create. 
Because of the need for tools in mathematical problem 
solving, many computer science research projects seek to 
create improved tools to support mathematical problem 
solving.  Researchers in Symbolic Computation or in 
Numerical Analysis seek to create more effective 
algorithms to perform difficult calculations.  As well, one 
research thrust of one of this paper’s authors [4, 8, 22] has 
centered on the design of Pen Math Systems, 
computational systems where mathematicians can use an 

electronic stylus on either bibliographic (i.e. small, 
personal devices such as Tablet PCs) or epigraphic (i.e. 
large, shared screens such as electronic whiteboards) 
surfaces to draw mathematical equations [8, 9, 10, 13].  
Equations, drawn by hand with an electronic stylus, are 
recognized at the semantic level, and the electronic 
representation of the mathematical data can then be used as 
input to, for example, Computer Algebra Systems.  One 
specific Pen Math System, MathBrush [8], is pictured 
below. Other similar systems can be found both in the 
research literature [9] and as commercial software 
applications [13, 14]. 
While many researchers have explored the design of pen-
math systems, as Human-Computer Interaction (HCI) 

Figure 1:  MathBrush, depicted here, is one popular 
Pen-Math system. 



researchers, we found ourselves asking a number of 
questions about this overall research thrust.  First, how do 
mathematicians work?  In HCI, before examining different 
options for technology design, best practice would dictate 
that researchers and designers first develop a solid 
understanding of the work practice of target users.  
However, in the case of mathematicians, we found little 
work describing the tasks, phases, or artifacts used in 
mathematical problem solving.  Second, how are 
computational tools (e.g. CAS) incorporated into 
mathematical problem solving?  Computational systems to 
solve mathematical problems are undoubtedly necessary 
aids to mathematicians.  For example, in a two month 
period after the release of an updated version of Maple in 
2006, approximately 800 000 licenses were activated.  
However, while we know that these tools are used, we do 
not know how frequently they are used, and for what style 
of tasks.  Finally, what do mathematicians think of current 
computational tools?  Do they trust the tools?  Do they use 
them frequently?  Do they offload all by-rote computation 
to the tools? 
Understanding these questions has implications in the 
creation of tools to help mathematicians, both at the design 
level and at the user interface level.  For example, 
understanding how mathematicians work allows us to 
develop insight into potential new interactive tools for 
mathematicians.  Understanding how computers are 
currently used suggests ways that current computational 
interfaces can be improved.  Finally, understanding 
attitudes allows us to better gauge whether tools we design 
will be used by mathematicians and, hopefully, how they 
will be used. 
In recent work [4], we presented a first analysis of the role 
of computation in mathematical problem solving.  The goal 
of this paper is two-fold.  First, we seek to disseminate our 
past analysis to researchers working in mathematical user 
interfaces.  Second, we expand on our analysis of work 
practice of mathematicians, specifically highlighting 
approaches to project management.  Finally, we explore 
some design possibilities that arise from our research on 
the work practice of mathematicians.  It is our hope that 
presenting some of our extended results in a workshop 
venue will encourage discussion amongst researchers 
interested in the design of interactive tools for 
mathematical problem solving. 
It should also be noted that there are limitations to our past 
work, and we welcome discussion with the MathUI 
community about these limitations.  One limitation is in the 
selection of research subjects that we studied.  We 
specifically chose to examine the work practices of 
theoretical mathematicians (as opposed to applied 
mathematicians, scientists, engineers, or students who 
study mathematics).  The goal of theoretical 
mathematicians is to develop new mathematical 
knowledge, not to present numerical answers to specific 

problems.  Other groups – including applied 
mathematicians, scientists, engineers and students – are 
undoubtedly more interested in concrete answers, so some 
themes may not fully transfer.  We will discuss these issues 
in additional detail when we present future work.  Second, 
the data from which we develop insight into mathematical 
problem solving processes and the attitudes of 
mathematicians towards computational tools was based on 
a set of contextual interviews and an examination of work 
artifacts (papers, whiteboards, etc.) in our subjects’ offices.  
Self-reported work practices may differ from actual work 
practice.  To guard against this, we were careful to ask for 
walkthroughs of recent problem solving tasks, rather than 
for generalizations of the problem solving process.  We 
also asked to see the recent work we were discussing so 
that our data is based around reconstructions, not 
recollections, of past work. 
This paper is organized as follows.  In Related Work, we 
highlight past work studying the role of computers in 
mathematical problem solving.  We also give a detailed 
overview of the results of our recent SIGCHI work on the 
role of CAS in Mathematical Problem Solving.  We then 
expand on the mathematical problem solving process by 
describing differing approaches to project management by 
mathematicians we studied.  We then present some design 
issues that arise from our work, focusing specifically on 
what tools should be designed for mathematicians, and how 
those tools might be used. 

RELATED WORK 
Computers in Mathematical Problem Solving 
Past research, including HCI research, on the use of 
computers as it intersects mathematics has largely focused 
around laboratory studies assessing general features, or 
around the use of computers in high school mathematics 
classes. 
In a laboratory evaluation of mathematical problem solving 
with high-school students as participants, Oviatt et al. 
studied the impact of different media on problem-solving 
performance. The experiment included four conditions: pen 
and paper, an Anoto pen, a pen-based Tablet PC, and a 
graphical equation editor [16]. The authors found that 
problem solving performance was better with pen and 
paper or the Anoto pen compared to the other two 
conditions. Drawing on Cognitive Load Theory (e.g., [23]), 
the authors attribute the results to the familiarity students 
have with entering and manipulating expressions with 
physical media, leading to comparatively higher cognitive 
loads when using digital media for these tasks. 
A number of studies have focused on the problem of 
entering mathematical expressions. Anthony et al. 
compared pen-based entry to keyboard-and-mouse, speech, 
and pen plus speech. The authors found that expression 
entry with keyboard-and-mouse was significantly slower 
than the other three conditions and that pen-based entry 
was the most preferred [2]. A pair of studies has also 



considered expression entry in the context of pen-math 
systems: systems use a tablet PC as an interface to CAS 

software (or some type of mathematical backend) with the 
goal of creating a more natural input interface. LaViola [9] 
and Labahn et al. [8] both assessed the user’s ability to 
correctly enter expressions and solve a number of small 
problems. The evaluations showed that while expression 
recognition can be challenging in such systems, users were 
able to complete their tasks effectively once their 
expressions had been recognized. These studies again 
suggest that pen-based input has particular advantages, but 
that digital systems do not offer clear-cut advantages with 
current interfaces and recognition engines. 
Moving outside of the laboratory setting, various research 
efforts have investigated how CAS integrate with high-
school and undergraduate education (e.g., [3], [11], [17], 
[18], [20]). These studies have uncovered a number of 
advantages to using CAS in the classroom. For example, 
one study found that students are able to experiment with 
different expressions more easily, which can promote a 
higher-level understanding of relevant concepts [3]. In 
addition, by delegating some of the work to the CAS, 
students are more able to focus on problem-solving 
processes as opposed to focusing solely on calculation 
details [11]. This line of research, however, has also shown 
that integrating CAS into the classroom requires careful 
lesson planning [11] and teacher support [17], and that 
some students have difficulty translating CAS output into 
representations that they understand [3]. Finally, some 
students feel that they learn more when solving problems 
by hand or that “real mathematics” is done by hand, not by 
computers [18]. 
This initial set of studies, both in the laboratory and in 
educational settings, provides important insights into the 
potential benefits and limitations of current CAS software. 
For example, expression input can be singled out as one 

area in need of further improvements. However, these 
studies characterize only short-term use of such software, 

typically in fairly well-defined, well-directed ways (e.g., in 
an experimental study or in the classroom with well-
defined task).  

Understanding Mathematical Work Practices 
To the best of our knowledge, the recent study of Bunt et 
al. [4] is the first study of how professional mathematicians 
make use of computer applications in authentic work 
situations.  An understanding of how these tools are 
adopted and applied in professional environments is 
valuable, both in guiding improvements to these tools and 
in identifying new tools which can aid mathematicians. 
To analyze mathematicians’ work processes and their use 
of computers, Bunt et al. interviewed nine different 
mathematicians from their institution.  Subjects included 
three faculty members, three post-doctoral fellows, two 
Ph.D. students, and one Masters Student.  Bunt et al. 
analyzed their results using established techniques from 
qualitative research.  The primary results of their research 
can be grouped into two main themes:  First, they develop 
an understanding of how mathematicians work; Second, 
they identify a series of factors that inhibit the use of 
current computational tools in mathematical problem 
solving. 

How Mathematicians Work 
Mathematical problem solving is an expert-level task 
involving a number of discrete steps.    One mathematician 
described solving a new mathematical problem as follows: 
Okay, this is how I work. First of all, I think about the 
problem. I draw some meaningless figures like this 
[artifact] and then I translate what I see to some equations. 
Then I write my equations down [in a way] that is readable 
by someone else, like this [artifact]. [...] And then I type it 
and then I submit it. (P6) 

Figure 2:  Photos of artifacts mathematicians work with.  From left to right, we see increasing levels of formality,
echoing P6's description of the work process. 



Artifacts also provide good clues into mathematical work 
practice.  Artifacts, drawn from a number of participants, 
align well with this work practice, as shown in Figure 2.  
The first phase of P6’s work, where meaningless figures 
are used as an aid to insight, coincides with Figure 2A.  
Figures 2B and 2C represent the intermediate phase, when 
insights are translated into mathematical equations.  
Finally, Figure 2D is the third phase, where the equations 
are written in a way that is readable by someone else.  It 
should be noted that the artifacts in Figure 2 do not belong 
to P6 specifically; instead, they are artifacts drawn from 
random participants in our study.  These artifacts 
demonstrate the commonality across work practices of 
different mathematicians. 
Based on an analysis of the comments of all of the 
participants plus an analysis of photos of artifacts of the 
participants, Bunt et al. identify four discrete phases in 
mathematical problem solving: 

1. Ideation: A brainstorming phase where ideas are 
generated. 

2. Execution: Ideas are carried out by solving, deriving, 
and constructing mathematical proofs. 

3. Formalization: The results of the previous two phases 
are refined such that the work becomes a more 
complete mathematical narrative. 

4. Dissemination: The work is prepared such that it can 
be presented to others, either via publication or a more 
formal presentation to a supervisor. 

While mathematical problem solving progresses through 
these phases, Bunt et al. are careful to note that, as in any 
creative endeavor (software engineering, architecture, etc.), 
the phases may be interleaved in various ways.  For 
example, during the process of formalization, participants 
may need to revisit the ideation phase to refine ideas, or 
during the process of dissemination, additional steps must 
be performed at the execution phase to refine ideas.  
However, the above phases of work represent an overview 
of the essential stages involved in developing and refining 
new mathematical knowledge. 

Usefulness of Current Computational Tools 
Prior to our work on the use of computational tools in 
mathematics, we believed that mathematicians valued and 
used computers in their work practice.  It seems obvious 
that computer applications cannot solve all of the problems 
mathematicians work with.  However, what caught us by 
surprise was how assiduously mathematicians avoided 
using computational tools.  Here, we first overview our 
findings, reported in Bunt et al. on how mathematicians use 
computers in their work.  We then explore their attitudes 
toward these tools. 
There are two primary tools used by mathematicians in 
their work practice.  The first is LaTeX, considered the 
gold standard for formatting technical documents for 
dissemination.  Mathematicians invest significant time into 

mastering LaTeX, and the system is considered powerful 
and efficient for document formatting and typesetting 
expressions. 
The second tool for our participants is Computer Algebra 
Systems, specifically Maple for the mathematicians we 
interviewed.  Mathematicians used Maple for two purposes 
during problem solving.  The first is to solve difficult 
expressions that are either challenging or tedious.  For 
example, as two participants note: 
Usually if it is a complicated expression that I can’t resolve 
myself. [...] the kind of tedious work that is sort of boring 
and uninteresting but where it is easy to make mistakes. 
(P1) 
If I have some horrible expression that I don’t like, some 
large amount of tedious computation, integratethis or 
reduce this giant mess to something useful, then sometimes 
I’ll stick it in Maple to see if it can solve the problem for 
me. (P3) 
The other common task for computer algebra systems is in 
rapid experimentation, essentially testing a large set of 
alternatives to determine how an expressions responds to 
various inputs: 
It’s a matter of just testing all possible solutions to see if 
they are solutions or not. And the algorithms are really the 
fastest way I can test that. (P2) 
While Maple was considered an aid by our participants in 
their problem solving, they were frequently reluctant to use 
Maple.  The discomfort with Maple was a result of a four 
distinct issues with current computer algebra systems: 
• A lack of transparency in the problem-solving process 
• A lack of support for free-form 2D representations 
• Difficulties transcribing representations from physical 

to digital representations 
• No support for collaboration 
We briefly touch on each of these issues here. 
The most frequently cited problem with Maple involved a 
lack of transparency in how numbers were generated.  This 
lack of transparency seemed to limit both the insight 
provided by Maple-generated solutions: 
Computers are great for running through large amounts of 
examples, but you don’t get the same insights. Whereas if 
you did something by hand, sometimes you just get more 
insight and can figure out the general pattern. (P2) 
As well, the limited transparency meant that 
mathematicians were reluctant to trust the results: 
I tend to not trust the results from the symbolic toolbox [...] 
Although it is very infrequent that the results are incorrect. 
(P6) 
In part, these observations may also arise from a stated 
desire of mathematicians to stay sharp by exercising 
“certain parts of my grade 12 calculus class.” (P1).  



However, it seems that if participants had a better 
understanding of the steps taken by a computer application 
to generate a solution, then they would be more likely to 
trust that solution. 
The second area where computers short-change 
mathematicians in problem solving is in flexibility of 
layout.  As one participant noted: 
And I don’t even necessarily work down the page. [...] I 
just sort of have everything all in one spot. Obviously it’s 
not very neat or easy to deal with, but just having 
everything on one page kind of makes a big difference [...] 
I think it’s easy having everything all in one spot. It just 
stops me from forgetting anything. (P7) 
While some computer algebra systems (e.g. Mathematica) 
allow some annotation of the problem solving process 
through free-form text, our mathematicians still desired 
more freedom in the placement of text and graphics than 
traditional CAS allow. 
Third, there were a set of difficulties associated with 
transcription.  These difficulties were related to the need to 
master a command set for expression input into computer 
algebra systems.  Any new command set has a learning 
curve, and when the representation is different from the 
common paper-based representation, there is always a risk 
of failing to note errors.  As one participant stated: 
I’ll type in an expression, I’ll have spent an hour trying to 
figure out what it means and what the results are, and then 
I realize I’ve made an error typing. (P1) 
Finally, our mathematicians frequently make use of 
blackboard and whiteboards because they often collaborate 
with other researchers in problem solving.  Computational 
tools currently provide only limited support for 
collaboration. 

Summary 
Bunt et al.’s recent work on how mathematicians use 
computers provides useful data as input to the design of 
new computational tools.  It also suggests ways that 
existing tools can be improved.  While we have spent 
significant time reviewing this past work here, we feel that 
this extensive review is a useful starting point for 
discussion at the MathUI workshop.  We now turn to some 
additional results, not previously reported, which can also 
provide guidance for design and refinement of interactive 
mathematical tools. 

PROJECT MANAGEMENT IN PROBLEM SOLVING 
In our past work [4], we presented a detailed analysis of the 
problem solving process mathematicians use to create new 
mathematical knowledge.  However, working through a 
solution using the four problem-solving phases is only one 
aspect of mathematical problem solving. 
In addition to the four problem-solving phases, many 
participants also discussed a meta-mode, which we refer to 
as Project Management. Project Management pertains to 

tracking the progress of one or more ongoing projects. 
Several participants mentioned creating and maintaining 
archives of work completed to date, allowing them to keep 
track of their current progress and more easily re-orient 
themselves after time away from the work. While we did 
not see a strong correlation between research experience 
and the tendency to engage in this meta-mode, one 
participant mentioned that this was something he did earlier 
in his career, but now found himself (as a postdoc) 
concentrating on only one project at a time  
I think after the PhD, you work on a topic and either you 
give up or you make a draft and submit it. (P5). 
Participants indicated using either LaTeX- or paper-based 
project management schemes. As an example of a LaTeX-
based scheme, P1 provided us with a sample document 
consisting of a collection of work related to a particular 
problem. He indicated that the document represents a rough 
collection of material that he has worked on, that begins to 
resemble a paper as the project progresses. Analysis of the 
document revealed that in addition to resembling a draft of 
a paper, it also contains notes on things that need further 
exploration, and ideas and formulations that did not pan out 
(the latter stored in an Appendix). Thus, for this 
participant, the latex document appeared to aid in both 
formalization and project management. 
Paper-based project management schemes included folders 
for grouping related projects and special notebooks with 
removable and re-configurable pages. 
I’m very excited about the notebook. This is why: so these 
ones, they’re from France, and the pages are removable. 
So they are like a binder, so that you can take the pages out 
and back in. And one thing that’s nice is I do different 
things and I can group together stuff and if I finish a 
notebook and I haven’t quite finished the project then I can 
take the stuff and put it back in. (P9). 
The elaborate nature of many of these project management 
schemes suggests an opportunity for design.  
Mathematicians need to archive paths that were not fruitful, 
and to indicate avenues which may prove useful but have 
not yet been fully explored (perhaps because multiple 
alternative paths forward exist).  As well, because the 
process of developing new insight may require sporadic 
intervals of work over long periods of time, they need some 
mechanism for tracking their on-going progress.  The 
heavy-weight nature of electronic solutions (partial 
documents typed in LaTeX) and the ad-hoc nature of 
paper-based project management schemes represent work-
arounds developed to perform this necessary task. 
This identification of one design opportunity leads 
naturally to potential tools that may arise from our work.  
In the next section, we present some thoughts on potential 
tools of use to mathematicians in their work. 



DESIGNING TOOLS FOR MATHEMATICIANS 
Given an understanding of the work practices of 
mathematicians, mathematics user interface work can 
address two needs.  First, systems can be designed which 
aid mathematicians in additional tasks they perform during 
their work.  Second, tools can be designed (or redesigned) 
to address those aspects of mathematical problem solving 
that are poorly served.  Alongside the design of new or 
improved tools, an understanding of work practices also 
allows us to evaluate current research thrusts (such as pen-
math systems) in light of the data we have collected on 
how mathematicians work and their attitudes toward 
technology. 

Designing New Computer Applications for Math 
In this paper, we highlight several drawbacks of current 
computer algebra systems.  Many of the drawbacks of CAS 
can be addressed by improvements to current CAS 
systems.  For example, if transparency is a problem, make 
computations more transparent to expert users.  If 
collaboration is a problem, introduce tools for 
collaboration.  If additional support is needed for free-form 
placement of expressions, modify the current workspace 
inside computer algebra systems to support this free-form 
placement. 
There are problems with this narrow approach to 
improving tools for pen-math systems.  Consider first 
transparency.  While transparency might make CAS more 
trusted, there is still a desire to “exercise grade 12 calculus” 
skills and a belief that doing math by hand guides insight.  
This belief was expressed by participants in our study, and 
it was also observed by researchers studying high school 
students [16, 18].  It then becomes an open question as to 
whether computer tools for math should always assume the 
computational burden, or should they instead sometimes 
strive to support verification of manual tasks. There is 
clearly a role for traditional CAS systems in solving 
difficult or tedious problems.  In these situations, a CAS 
that presented some transparency to the user might be more 
trusted.  However, there is also a role for systems which 
verify work done by the user. 
One way to implement systems which verify rather than 
replace the mathematician is to explore intelligent paper 
systems.  The Anoto pen [6] is one example of an 
intelligent paper application.  The Anoto pen has a camera, 
a power source, memory, and possibly a Bluetooth 
transmitter embedded in the barrel of a standard ballpoint 
pen.  When writing on special paper, the pen captures and 
stores the strokes drawn.  The strokes can then be uploaded 
to a computer via Bluetooth, if present, or via a USB 
connection. Anoto pen technology has been used to design 
intelligent mark-up systems for paper documents, systems 
that use specialized gestures to interact with both the 
content on the paper and with computer systems that 
monitor the content. One could imagine extending these 
designs to the world of mathematics.  Researchers and 

students could work on problems using Anoto pen and 
paper.  Specialized gestures, monitored using Bluetooth, 
could be used to highlight work that should be verified.  If 
errors exist, a computer located nearby could indicate the 
error, or, if no suitable computer is nearby, a computer 
which receives the Bluetooth data could text message a 
user’s cell phone with potential errors. 
Collaboration presents similar alternatives.  While 
collaboration within CAS is one alternative, it seems that 
restricting collaboration to the small screens typical of PCs 
running CAS is not an optimal solution.  Instead, electronic 
whiteboard based solutions might be more suited to 
collaborative math.  Systems such as Flatlands [15] and 
IBM’s Blueboard [19] have explored novel ways of 
supporting the serendipitous collaborative creation of 
information on a malleable display located on an electronic 
whiteboard.  In Flatlands, different regions of the board are 
defined dynamically as people work, and other regions are 
pushed aside and resized to make room for the new 
content.  Within the region, the work being done is 
analyzed, and specialized environments for different work 
(e.g. a set of math tools, etc.) are applied.  With Blueboard, 
collaboration is simplified by easily supporting the 
dissemination of shared drawings.  Tools such as these 
might be much more useful in supporting shared discussion 
than would a shared canvas in a CAS. 
Finally, freeform placement on a 2D canvas is a desirable 
feature mentioned by our subjects in our earlier study [4].  
However, even with freeform typed text placement, CAS 
still place a significant burden on users to either type free-
form content or to use specialized commands to enter 
expressions from the keyboard.  In contrast, some research 
in pen-math systems has focused on integrating free-form 
notes with expressions to be recognized [9, 10].  In some 
versions of the MathPad2 system, users can switch modes 
between equation entry and note taking.  While the system 
was conceived of as a tool for students taking notes in a 
classroom, it seems that this ability to switch back and forth 
between note taking and expression entry might be a 
desirable feature.  Whether such systems are implemented 
on tablet computers or with Anoto pens, the ability to drop 
the constraint for formally correct expressions and to 
sketch out ambiguous intermediate solutions for later 
refinement seems a desirable feature for mathematicians of 
all levels. 
Beyond the problems identified with current tools, 
significant aspects of mathematicians’ work practice are 
currently unsupported.  As we noted earlier, the Project 
Management task that many mathematicians engage in 
while doing research over longer periods of time could be 
supported by novel interactive tools.  Here, again, systems 
like the Anoto pen [6] or Wellner’s Digital Desk [24] 
might monitor a mathematician’s current work. Through 
the use of specialized gestures or placement of documents 
(for example if a document is tossed in the recycling bin) 



the mathematician might be able to off-load some project 
management and tracking onto intelligent computer 
systems. 

Evaluating Current Research in Pen-Math 
Many pen-math systems [8, 9, 25] are premised on the 
assumption that equation entry with LaTeX [25] or in CAS 
[8, 9] is exceedingly difficult.  For LaTeX, this assumption 
may be mistaken, as mathematicians express little 
hesitation about using LaTeX and seem to have little desire 
to change typesetting tools.  For CAS, the problem seems 
to have less to do with entry and more to do with 
verification, as subjects note that they can’t detect typing 
errors.  Even with pen-math systems, it is very possible to 
miss recognition errors which change the semantics of your 
expression. 
Beyond a possibly mistaken assumption that expression 
entry is the most pressing need for mathematicians, pen-
math systems are also designed to speed problem solving, 
similar to current CAS.  The goal is to allow 
mathematicians to enter equations, to have the systems 
recognize the equations, and then to solve the mathematical 
problems represented by the equations rather than have the 
mathematician solve the problem by hand.  As such, while 
they may replace CAS and solve some of the problems 
with CAS (such as 2D input), they still suffer from the 
drawbacks of CAS, namely a lack of transparency and an 
off-loading onto the computer of calculations that our 
participants like to do by hand to “stay sharp”.  Whether 
pen-math systems are the most appropriate avenue of near-
term research effort is something that is open to debate. 

FUTURE WORK 
While our on-going research represents the first study of 
mathematicians work practices in professional settings and 
their attitudes toward the computer tools they use in these 
settings, it, like all work, has potential weaknesses.  For 
example, it may be the case that a study of applied 
mathematicians would yield markedly different results.  To 
address this issue, we have begun conducting interviews of 
applied mathematicians, engineers, and first and second 
year undergraduate students.  While our preliminary results 
indicate that generating numerical answers using packages 
like MATLAB may be more important than symbolic 
manipulations for some subjects, many similar themes 
(transparency, collaboration, free-form input, narrow 
utility) are still present in our data.  We continue to analyze 
qualitative data with the goal of providing an even richer 
view of how mathematicians work. 
As well, our work to date has focused on qualitative 
interviews to capture work practice, with the attendant risk 
of inaccurate description of actual practice.  This risk is 
always present in self-reports of work practice.  In the 
future, we plan to perform both experience sampling and 
diary studies to capture more accurately how 
mathematicians work with computers. 

Finally, while we have proposed possible technology to 
design solutions for mathematicians, we have yet to 
prototype any systems for this space.  Prototyping of 
possible applications is a natural next step that we plan to 
take as our understanding of mathematicians’ work practice 
continues to evolve. 

CONCLUSION 
In this paper, we present an overview of our work studying 
mathematical problem solving as practiced by theoretical 
mathematicians.  We find themes in their work and their 
attitudes toward computation that echo findings by 
researchers studying high school students.  We highlight 
these findings and speculate on possible avenues of UI 
design for mathematicians.  It is our hope that the work we 
present here might encourage a discussion on the role 
computers can best serve in mathematical problem solving. 
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