
Using TEXMACS in Math Education:
An exploratory Study

Marc Wagner and Henri Lesourd

Universität des Saarlandes
D-66123, Saarbrücken, Germany
{wagner|henri}@ags.uni-sb.de

In order to foster the use of the standard scientific text-editor GNU TEXMACS in math
education and to develop semantic-based added values during the authoring process, we
conducted an exploratory study with a first year mathematics course. We developed an ex-
tension of TEXMACS to support creating, browsing, solving and submitting exercises to an
external repository. During a supervised classroom exercise we collected successive snap-
shots of the student solutions. We present an analysis of this corpus with respect to the edit
behaviour and selected linguistic characteristics. Furthermore, we discuss how the collected
information can be used to provide support services for the overall authoring process. The
progress of the study is published regularly at www.imath.eu.

1 Introduction

The vision of a powerful mathematical assistance environment, providing computer-based support for
most tasks of a mathematician, has stimulated new projects and international research networks in recent
years across disciplinary boundaries. A mathematical assistance system that really supports mathemati-
cians in their daily work has to be highly user oriented. The mathematician is used to formulate his
problems with pen and paper, we do not want to disrupt this habit, thus we decided to integrate our con-
ception of an ideal mathematical assistance system (IMAS) in the traditional workflow, namely sketching
the solution using pen and paper and afterwards encoding the solution and refining the details by means
of our TEXMACS [11] based interactive user interface.

Our aim is to build document-centric services that support the author in the text-editor TEXMACS while
preparing a document in a publishable format. We want to start with mathematical documents written
without any restrictions and try to extract the semantic content with natural language analysis techniques
and accordingly generate or modify parts of the document using natural language generation. To analyse
the requirements for the natural language techniques we first have to collect in an exploratory study a
corpus, that is a collection of sample documents.

Regarding the capabilities of state of the art proof assistance systems like ISABELLE [9], COQ [4]
or ΩMEGA [10], it seems more realistic to provide the authoring assistance to a first year mathematics
student rather than to a mathematician working on the edge of research. Therefore we decided to conduct
an exploratory study with a first year mathematics course.

The paper is organized as follows: Section 2 introduces TEXMACS as extendable WYSIWYG authoring
environment. Section 3 presents our general architecture consisting of TEXMACS, an exercise manage-
ment plugin and an external repository. The setting for the exploratory study is described in Section 4.
Section 5 reports on a corpus analysis with respect to the edit behaviour and selected linguistic charac-
teristics. We discuss potential added values in Section 6 and summarize the results in Section 7.

1

www.imath.eu

2 TEXMACS in a Nutshell

The scientific WYSIWYG (what-you-see-is-what-you-get) text-editor TEXMACS offers scientists a free
and user friendly authoring environment. TEXMACS is optimized for efficient input of mathematical
formulas and for structuring mathematical documents. High-quality typesetting algorithms and TEX
fonts produce professional documents. Inspired by the authoring system TEX [7] and its extension LATEX
[8], TEXMACS produces documents which match the standards of professional publications. Indeed,
printed TEXMACS documents are not distinguishable from those produced with LATEX.

Furthermore, TEXMACS is suitable as an interface for computer algebra systems, as the high typesetting
quality goes through for automatically generated formulas. It can be highly customized as it supports the
GUILE/SCHEME extension language. TEXMACS supports the export of documents to POSTSCRIPT [1]
and PDF [2] and offers both import and export to HTML, LATEX and XML. The system runs on all major
Unix platforms and Microsoft Windows.

Figure 1: Architecture of the TEXMACS system

We interact with the user through menu-style documents. Therefore we discuss now the architecture
of the TEXMACS system (see Figure 1) that allows us to programmatically manipulate documents. For
our purposes, the two most important components of the architecture are the macro processor and the
event processor. The macro processor expands the user-defined macro markup tags in a document tree
and translates them into primitive, macro-free TEXMACS markup. One can define new macro tags and
the corresponding TEXMACS macros to determine the physical semblance of these new tags. Once ex-
panded, the rewritten tree is displayed in the current output device by the typesetter. A TEXMACS tree
can be displayed in different ways, such as in the markup language, in LATEX syntax or as a SCHEME

s-expression.
The event processor detects the user input events and updates the current markup tree accordingly.

Once updated, the current tree is then expanded and again typeset. One can define new user input
handlers and write a TEXMACS plugin to define the corresponding new actions that are to be performed
on the current markup tree in the editor. Such plugins are extensions to the event processor, and can
be written using the SCHEME scripting language, which is embedded in TEXMACS. They can also be
employed to allow external systems such as computer algebra systems or proof assistance systems to
modify the current markup tree.

The scientific text-editor TEXMACS provides with its graphical WYSIWYG user interface a simple and
intuitive access to the power of LATEX. For a detailed introduction to the LATEX features of TEXMACS we
would like to refer to the tutorials specifically written for the participants of our study. These TEXMACS
primers are available at www.imath.eu.

2

3 Exercise Management

The general idea is to use the text-editor as a user interface (UI) for creating, browsing, solving and
submitting exercises. The main requirement for an exercise manager is the storage of successive versions
of exercise sheets, exercises and their student-specific solutions. Therefore we decided to use the client-
server architecture shown in Figure 2, where the internals of TEXMACS, as explained in section 2, are
represented by one combined module called Layout Engine. The job of TEXMACS is to display the user
interface (UI) for navigating through exercises and solutions. Using the advanced layout capabilities of
TEXMACS we implemented the interface as a plugin that dynamically manipulates documents. Details
about that technique are explained in Subsection 3.1. The IMATH server acts as a simple transactional
versioning system with basic rights management. User accounts and document versioning information
are maintained in a database by the server while the document snapshots are physically stored in the file
system. The provided interface is described in Subsection 3.2.

Figure 2: Architecture of the Exercise Manager

3.1 Dynamic Documents as Interfaces

Figure 3: TEXMACS UI of the Exercise Manager

The question was how to navigate inside TEXMACS
through the exercises and their solutions. Our an-
swer can be seen as the equivalent of AJAX [6]-
driven browser interfaces for modern text-editors.
In TEXMACS we encode the menu of the exer-
cise manager as table in a document, using hy-
perlinked objects as buttons that trigger plugin in-
terface functions on the server. The sophisticated
layout engine is able to display this kind of menu
in arbitrary styles (see Figure 3). Most impor-
tantly we use the DOM-like API of TEXMACS for dynamically updating the document and thus the menu
when the user interacts with the interface. Status information can easily be synchronized between server
and interface using a cronjob in TEXMACS.

3.2 Automatic Versioning of Exercises and Solutions

Since we are interested in successive snapshots of the documents written in the text-editor, we use a
server-based persistent storage for exercise sheets, exercises and their solutions. User accounts and doc-
ument versioning information are stored in a MYSQL database while the document content is stored in
the file system. Admin users can browse, create, delete and rename exercise sheets and exercises. Ad-
ditionally, they can watch the user solutions via a replay mechanism, simulated by successive checkouts
of subsequent solution versions. Standard users can browse exercise sheets and exercises, and create
solutions. A cronjob automatically commits new versions of the solution to the IMATH server. Thus the
last version is automatically submitted and we are able to monitor the edit behaviour over time.

3

4 Exploratory Study

For our study we had the great opportunity to collaborate with the first year mathematics course Mathe-
matik für Informatiker of Prof. John at Saarland University. In the following we will explain the details
and workflow of the study and give an analysis of the authoring behaviour over time.

4.1 Parameters and Workflow

In the first week we introduced TEXMACS to the students who all were completely unfamiliar with LATEX.
The students got quickly familiar with the intuitive usage provided by the WYSIWYG interface of
TEXMACS which was a key requirement for being able to conduct this study at all. In the following ten
weeks the students had to solve and submit one out of four exercises per week with TEXMACS. After that
training period we conducted the real study, a supervised classroom exercise that had to be completely
solved with TEXMACS. 49 students had 90 minutes time to solve the following 4 exercises:

1. Let (an)n∈N be a convergent sequence in R with limit a ∈ R. Show that it is a Cauchy sequence.

2. Compute the following limits of complex-valued sequences:
limn→∞

2in3−n4

n4+3in2−1
, limn→∞

3n2−2
n3+1

, limn→∞
5n−7n2

(n+1)2−8n
.

3. For x ∈ R+ compute limn→∞
xn−n
xn+n .

4. Compute the following limits of the sequences (xn)n∈N with the help of limits proven in the
lecture: xn = (1− 1

n)n, xn = (1− 1
n2)n.

Our software took automatic snapshots of the current state of the solutions every 10 seconds. Please note
that we had no influence on the type of exercises at all, the exercise sheet was completely regular. The
concrete exercise sheet as well as more details of the study are available at www.imath.eu.

4.2 Analysis of the Authoring Behaviour

Figure 4: Exercise Replay in TEXMACS

By using the replay mechanism (see Figure 4)
specifically developed for this study we were able
to analyse the authoring behaviour of the students
per exercise over time. First we observed that the
students spend on average 30% of their time with
searching relevant definitions and theorems in the
course material, another 30% with producing a
draft solution on paper, and the final 40% with au-
thoring the solution in TEXMACS. We believe that
it is important to acknowledge the valuable part of
the good old pen & paper method in order to build

a system that is really accepted by students as well as working mathematicians. Analysing the authoring
behaviour inside TEXMACS, we were able to identify the following types of modifications:

• The standard type of modification is the monotonic increasing of the solution when the student is
continuously writing up.

• Quite often Copy & Paste is used to shorten the complicated input of long mathematical formulas
that differ only slightly from previous formulas.

• Local modifications can be observed regularly. This means that parts of the last sentence are
deleted, rewritten or corrected, like for example adding missing brackets in formulas.

• Global modifications can only be observed in very few cases. Refactoring operations like variable
renaming affect in general more than one sentence. Sometimes such an operation is not executed
but written declaratively, for example ”By renaming ε2 to ε the theorem follows.”.

4

5 Corpus Analysis

The documents collected during the experimental study have been analysed with respect to different
linguistic aspects. In the following we will report in more detail about the analysis of the most important
aspects formula verbalisation, style of sentences, concluding step and justifications.

5.1 Formula Verbalisation

Figure 5: Formula Verbalisation

The aspect formula verbalisation is di-
vided into the following categories: (1)
formalised (e.g. “limn→∞an = a”,
“|an − am| < ε ∀n, m ≥ n0(ε)”)
where formulas are completely written
in symbolic notation, (2) weakly ver-
balised (e.g. “a is the limit of (an)n∈N”,
“There exists a ε > 0 for which holds that
∀n0(ε).∃n, m ≥ n0(ε) . . .”) where some
relations or quantifiers are partly ver-
balised, and (3) strongly verbalised (e.g.
“For all ε holds: there exists a n0(ε) ∈ N
with . . . ”, “For x < 1, xn converges on
0.”) where all relations and quantifiers are
fully verbalised. Figure 5 shows the formula verbalisation grade for every exercise. An exercise is clas-
sified as weakly/strongly verbalised if at least one weakly/strongly verbalised formula sentence occurs.
The analysis reveals that

• services for symbolic formulas (e.g. notation check) are worth development,

• being able to fully parse/render symbolic formulas and weakly verbalised formulas gives a cover-
age of at least 70%,

• a linguistic ontology is required to deal with strongly verbalised formulas.

5.2 Style of Sentences

Figure 6: Style of Sentences

The style of sentences is classified into the
following categories: (1) no sentences if
there are no sentences at all, (2) simple con-
nections if the sentences are built with sim-
ple key phrases (e.g. “Therefore it holds
that ...”, “It holds ...”, “Hence we have
...”, “Thus it follows ...”, “Then ...”, “This
means ...”, “Let ...”, “Select ...”, “Assum-
ing ...”) and the building blocks are sym-
bolic or weakly verbalised formulas, and
(3) complete sentences if the sentences are
fully verbalised with ontological building
blocks like type, identifier, concept or at-
tribute. The analysis in Figure 6 shows that

• a linguistic ontology is absolutely necessary to support text-style proofs like the one in the first
exercise because a coverage of less then 50% is not acceptable,

• for computational proofs with case distinctions the handling of simple connectors and weakly
verbalised formulas gives an excellent coverage of at least 85%.

5

5.3 Concluding Step

Figure 7: Concluding Step

The concluding step is divided into the fol-
lowing categories: (1) not present if there is
no step concluding the proof, (2) symbolic
if there is a �, “qed” or “q.e.d.” at the end
of the proof, and (3) verbalised if the con-
cluding step is a fully verbalised sentence
(e.g. “Therefore (an)n∈N is a Cauchy se-
quence.”, “... hence the theorem holds.”,
“This contradicts the assumption.”, “... and
thus |an − am| < ε ∀n, m ≥ n0(ε)”).
Note that there are two types of verbalised
concluding steps, one abstract type that
could be used for every proof of the same
style, and one concrete type that performs
the last inference, repeats the theorem or justifies the last conclusion. Figure 7 shows the analysis of
concluding steps which draws the following conclusions:

• Verbalised concluding steps do almost never occur in computational proofs, even symbolic con-
clusions are very rare.

• In correlation to the sentence style aspect we can observe that 50% of the text-style proofs require
a linguistic ontology in order to understand the verbalised concluding step.

5.4 Justifications

Figure 8: Justifications

The last aspect concerns the justification
of proofsteps and consists of the following
categories: (1) not present if no proofstep
is justified at all, (2) references if the proof-
steps are justified by referring to used theo-
rems or concepts (e.g. “... with the triangle
inequality”, “From 14.23 it holds with p =

−1 ...”, “x1
Theorem 14.23===========⇒ x2”), and (3)

verbalised if the justification is a fully ver-
balised sentence possibly with references to
proof strategies, complex methods or other
sources of knowledge (e.g. “Since ... it
holds ...”, “... holds because ... and ...”,
“By polynomial division we compute ...”,

“Reason: Main coefficient is −1”, “In the lecture we proved that ...”, “From the first part of the ex-
ercise it follows that ...”, “It’s a matter of common knowledge that ...”). An exercise is classified as
references/verbalised if at least one reference/verbalised justification sentence occurs. The analysis in
Figure 8 reveals that

• not supporting verbalised references results in a medium coverage of at most 65% in the worst
case, which might result in a low user acceptance,

• different linguistic ontologies are required to effectively understand verbalised references: a docu-
ment ontology (e.g. for references to other parts of a document), an argumentation ontology (e.g.
for references to the lecture or domain-specific techniques), and a concept ontology (e.g. for refer-
ences to definitions). At least the concept ontology needs to be extended dynamically for example
whenever new definitions or named local hypothesis are stated.

6

6 Discussion

In order to develop adequate tools for the interactive authoring of mathematical documents, we first of
all have to choose the most suitable linguistic techniques for our scenario among the available shal-
low and deep methods. Therefore we conducted an exploratory study to identify the relevant linguistic
phenomena that need to be supported by an ideal mathematical assistance system.

6.1 Lessons Learned

Figure 9: Components of an IMAS

Dynamic documents as interfaces in text-editors are an
interesting alternative to AJAX-driven web interfaces.
Regarding the edit behaviour we observed a monotonic
increasing with frequent use of copy & paste. The last
sentence is quite often modified locally, global refactor-
ing is used very rarely and only declaratively. Notational
consistency checks would be very helpful because a lot
of modifications were related to notational errors. Re-
garding the linguistic aspects we analysed that being able
to fully deal with symbolic and weakly verbalised for-
mulas, simple connected sentences and references leads
to an average coverage of 70% in our scenario. This
level might be reached with generic methods. By inte-
grating linguistic ontologies (document, argumentation,
concept) and mechanisms to extend these ontologies dy-
namically, we might reach a coverage of more than 90%.

6.2 Ideal Mathematical Assistance System

According to the results of our study, an ideal mathematical assistance system (IMAS) should have at
least the components shown in Figure 9:

• Natural Language Analysis and Generation: Weakly or strongly verbalised sentences have to be
analysed resp. generated. We are currently integrating the shallow natural language generation
system TG/2 [5] for this purpose.

• Context Memory: Natural language has to be generated in adaption of the style used in the context.

• Document Aspect Analysis and Dynamic Adaption: Different linguistic phenomena have to be
analysed and put into the context, notation and references should be dynamically adapted. We
will use the mediator system PLATΩ [3] for incremental parsing/rendering and semantic-based
refactoring.

• Theorem Prover and Proofstep Granularity Analysis: The job of the theorem prover is to verify the
correctness of the proofs or to generate missing proofsteps at an appropriate level of granularity.
We will use the theorem prover ΩMEGA [10] as sophisticated foundation.

• Ontological Knowledge: In order to deal with strongly verbalised sentences we need to build up
and dynamically extend different linguistic ontologies.

Zinn’s computational framework[12] and the linguistic analysis of mathematical textbook proofs in
his PhD thesis provide valuable insight into building linguistic ontologies for this purpose. Furthermore
Zinn discusses the problems arising during the linguistic analysis of informal mathematical discourse.

7

7 Conclusion and Outlook

By analysing the corpus collected in an exploratory study with a first year mathematical course we were
able to identify some design requirements for an authoring support system. The results of the conducted
study are of course specific to first year mathematics students, we need further studies to transfer the
results reliably to the general case. Due to the positive feedback of the lecturer and students we continue
the exploratory study in the subsequent mathematical course. Beside that we plan to build two prototype
systems:

• a generic system with a focus on scalability that supports weakly verbalised expressions and justi-
fications by reference,

• a specialized system with ontological encoding of the domain knowledge and corresponding lexi-
con and grammar for natural language analysis and generation.

To reasonably limit the amount of work that needs to be invested into the second system, we choose a
basic domain like Simple Set Theory. The aim is to evaluate and compare both systems with respect to
user acceptance and return-on-invest.

Acknowledgments

The authors would like to thank Prof. Dr. Volker John, Michael Roland and their student assistants from
the mathematics department of the Saarland University for supporting our study in the first year course
Mathematik für Informatiker. This research is supported by the German National Academic Foundation.

References
[1] Adobe Systems Inc. PostScript Language Reference, Third Edition. Addison-Wesley, Boston, 1999.

[2] Adobe Systems Inc. PDF Reference, Fifth Edition, Adobe Portable Document Format. Adobe Press, 2005.

[3] S. Autexier, A. Fiedler, T. Neumann, and M. Wagner. Supporting user-defined notations when integrating scientific
text-editors with proof assistance systems. In M. Kauers, M. Kerber, R. Miner, and W. Windsteiger, editors, Towards
Mechanized Mathematical Assistants, LNAI. Springer, June 2007.

[4] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development: Coq’Art: The Calculus of Inductive
Constructions. EATCS Texts in Theoretical Computer Science. Springer, 2004.

[5] S. Busemann. Ten years after: An update on TG/2 (and friends). In Proceedings 10th European Workshop on Natural
Language Generation, August 2005.

[6] J. J. Garrett. AJAX: A new approach to web applications, 2005.

[7] D. E. Knuth. The TEXbook. Addison Wesley, 1984.

[8] L. Lamport. LATEX: A Document Preparation System, 2/e. Addison Wesley, 1994.

[9] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS 2283.
Springer, 2002.

[10] J. Siekmann, C. Benzmüller, V. Brezhnev, L. Cheikhrouhou A. Fiedler, A. Franke, H. Horacek, M. Kohlhase, A. Meier E.
Melis, M. Moschner, I. Normann, M. Pollet, V. Sorge, C. Ullrich, C.-P. Wirth, and J. Zimmer. Proof development with
ΩMEGA. pages 143–148. Springer, 2002.

[11] J. van der Hoeven. Gnu TEXMACS: A free, structured, WYSIWYG and technical text-editor. Number 39-40 in Cahiers
GUTenberg, May 2001.

[12] C. Zinn. Computational Framework For Understanding Mathematical Discourse. Logic Journal of the IGPL, 11(4):457–
484, 2003.

8

Appendix

In the following we present the exercise sheet and some selected student solutions from our study, trans-
lated from German into English. The original material is available at www.imath.eu on request.

Exercise Sheet

1. Let (an)n∈N be a convergent sequence in R with limit a ∈ R. Show that it is a Cauchy sequence.

2. Compute the following limits of complex-valued sequences:
limn→∞

2in3−n4

n4+3in2−1
, limn→∞

3n2−2
n3+1

, limn→∞
5n−7n2

(n+1)2−8n
.

3. For x ∈ R+ compute limn→∞
xn−n
xn+n .

4. Compute the following limits of the sequences (xn)n∈N with the help of limits proven in the
lecture: xn = (1− 1

n)n, xn = (1− 1
n2)n.

Solutions for Exercise 1

Requirement: (an)n∈N is a convergent sequence in R with limit a ∈ R.
Assume this sequence is not a Cauchy sequence. Then we have ∃ε > 0 such that for all n0(ε) ∈ N holds:
∃n and m ≥ n0(ε) |an − am| ≥ ε. Because an is a convergent sequence, it follows that: For all ε2 it
holds: there exists a m0(ε2) ∈ N with |aj − a| < ε2 ∀j ≥ m0(ε2). Choose ε2 < ε

2 . Then we have:
|an − a| < ε2 and |am − a| < ε2. But then it follows |an − am| < 2ε2. Because of ε2 < ε

2 it holds that:
|an − am| < 2 ε

2 = ε. This is in contrast to the assumption. Hence an is a Cauchy sequence.

Given: (an)n∈N is a convergent sequence in R with limit a ∈ R⇒ limn→∞ an = a
For each ε > 0 there exists a n0 such that for all n ≥ n0 it holds that: |a− an| < ε

2 .
∀n, m ≥ n0 it follows by the triangular inequality:

|an − am| ≤ |an − a|+ |a− am| <
ε

2
+

ε

2
= ε

⇒ (an)n∈N is a Cauchy sequence.

Def. convergent sequence:
∀ε > 0∃n0 : ∀n > n0 : |an − a| < ε′, additionally
∀m > n0 : |am − a| < ε′

By addition of both inequalities we get:
|an − a|+ |am − a| < 2ε′

With the triangular inequality it follows by estimation:
|an − a− am + a| < 2ε′

|an − am| < 2ε′

If we rename 2ε′ into ε, we get the theorem.

Solutions for Exercise 2
a) Let x = 2in3−n4

n4+3in2−1
= 2i 1

n
−1

1+3i 1
n2−

1
n4
⇒ limn→∞ x = 0−1

1+0 = −1

b) Let x = 3n2−2
n3+1

=
3 1

n
− 2

n3

1+ 1
n3
⇒ limn→∞ x = 0

1 = 0

c) Let x = 5n−7n2

(n+1)2−8n
= 5n−7n2

n2+2n−8n+1
= 5n−7n2

n2−6n+1
= −7+5 1

n

1−6 1
n

+ 1
n2
⇒ limn→∞ x = −7+0

1−0+0 = −7

9

www.imath.eu

a) limn→∞
2in3−n4

n4+3in2−1
= limn→∞

−1+2 i
n

1+3i 1
n2−

1
n4

= −1+0
1+0−0 = −1

b) limn→∞
3n2−2
n3+1

= limn→∞
3
n
− 2

n3

1+ 1
n3

= 0−0
1+0 = 0

c) limn→∞
5n−7n2

(n+1)2−8n
= limn→∞

5n−7n2

n2−6n+2
= limn→∞

−7+ 5
n

1− 6
n

+ 2
n2

= −7+0
1−0+0 = −7

Solutions for Exercise 3

For x ∈]0, 1| we get the following limit:

lim
n→∞

xn − n

xn + n
=

limn→∞ xn − n

limn→∞ xn + n
=

0− 1
0 + 1

= −1

For x = 1 we get the following limit:

lim
n→∞

1n − n

1n + n
= lim

n→∞

1− n

1 + n
= −1

For x > 1 we get the following limit:

lim
n→∞

xn − n

xn + n
= lim

n→∞

1− n
xn

1 + n
xn

=
1− 0
1 + 0

= 1

Case distinction for x ∈ R:

1. x < 1: limn→∞(xn

xn+n −
n

xn+n) = limn→∞(0
0+n −

n
0+n) = 0− 1 = −1

2. x = 1: limn→∞(xn

xn+n −
n

xn+n) = limn→∞(1
1+n −

n
1+n) = 0− 1 = −1

3. x > 1: limn→∞(xn

xn+n −
n

xn+n) = 1− 0 = 1 , because xn grows faster than n.

Solutions for Exercise 4

xn = (1− 1
n)n

With Lemma 14.23 we have: limn→∞(1 + p
n)n = ep

Let p = −1, then it holds limn→∞(1− 1
n)n = e−1

xn = (1− 1
n2)n

With p = − 1
n and Lemma 14.23 it follows: limn→∞(1 + − 1

n
n)n = limn→∞(1− 1

n2)2 = e−n

for xn = (1− 1
n)n :

from Lemma 14.23 we know: limn→∞(1 + p
n)n = ep

it follows with p = −1 that the limit of the sequence is e−1.
for xn = (1− 1

n2)n :
because (1 + 1

n2)n = ((1 − 1
n)(1 + 1

n))n it follows from the first part of the exercise that limn→∞(1 −
1
n)n = e−1 holds and with Lemma 14.23 additionally limn→∞(1 + 1

n)n = e1. Hence the limit of the
sequence is e1e−1 = e0 = 1.

10

	Introduction
	TeXmacs in a Nutshell
	Exercise Management
	Dynamic Documents as Interfaces
	Automatic Versioning of Exercises and Solutions

	Exploratory Study
	Parameters and Workflow
	Analysis of the Authoring Behaviour

	Corpus Analysis
	Formula Verbalisation
	Style of Sentences
	Concluding Step
	Justifications

	Discussion
	Lessons Learned
	Ideal Mathematical Assistance System

	Conclusion and Outlook
	References

