
Distributed Tagging and Annotation of Computer-
Checked Proofs

Eliot Setzer
∗

Laboratory for Foundations of Computer Science
School of Informatics, University of Edinburgh

Abstract

Users of theorem proving systems often complain about lemma management issues within

their own proofs and have even more difficulty locating and reusing appropriate definitions

and formalized theorems available from third parties. Both users’ searches for and under-

standing of lemmas can be improved by associating relevant metadata with portions of

formal proofs. This paper describes an architecture based on web annotation techniques

intended to lower the barriers to spur-of-the-moment and collaborative creation of meta-

data for formal proofs. The architecture allows user annotations and both user-defined and

automatically generated tags to be represented in a unified and prover-agnostic way.

1 Introduction

A wide variety of mathematical results have been formalized using theorem proving programs
such as Isabelle [14], Coq [5], Matita [2], and Mizar [16]. These programs operate by processing
commands contained in proof scripts (which in some cases may be only a part of larger proof
documents) that describe how to build low-level representations of proofs. Proof documents are
written and maintained manually, and this process presents challenges similar to those presented
by ordinary source code as well as some challenges specific to formalized proofs.

Practitioners of proof formalization consulted during this research say that the most restric-
tive bottlenecks in the process of developing formalized proofs often come from the difficulty in
locating lemmas needed at a point in the proof. The user may know that the needed lemma’s
definition exists somewhere, under some name, within the libraries or in the rest of the project’s
code base, and it may be easy to describe what the lemma states in natural language, but it can
still be difficult to find among all the other lemmas. Research aiming to make the search for
lemmas more systematic has mostly focused on improving search techniques and on ways for
authors to include more detailed and search-friendly metadata within their proofs’ text. An
example of the first is dynamic indexing of saved theorems in Matita [2] and an example of the
second is the literate programming system for Isabelle ([14] Chapter 4). A third, but related and
complementary, possibility is to develop ways to associate metadata with proof documents
without actually embedding it into them (since adding text to the documents themselves is not
always possible or desirable).

To this end, this paper proposes a unified architecture for annotation and tagging of proof
documents based on techniques developed for web annotation systems. Web annotation systems
are intended to allow users to post comments about portions of any document with a URI
without relying on the server hosting the document to provide comment thread management
facilities. This goal is achieved by storing each comment (or a URI for the comment) together
with the URI of the item it annotates in a tuple on an annotation server and providing a way to
query the server for all annotations associated with a given document. While posting and
retrieving comments is the intended application of web annotation, many web annotation sys-
tems are very general and can be seen as simply frameworks for defining functions from URIs to
lists of URIs. Sections 3 and 3.1 describe ways of applying web annotation to proof documents.
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If support for general annotations on proof documents is made available in this way, then
tags can be implemented on top. Tags (or more precisely tag instances) are simple, machine-
readable annotations consisting primarily of an identifier called the tag name that act to group
all objects tagged with the same tag name and that, in particular, allow a list of all items
tagged with the same tag name to be retrieved efficiently. Collaborative tagging systems that
permit members of a large collaborating audience to create tags, such as CiteULike and
Del.icio.us, have recently become popular due to the useful structure that can emerge from
many very simple tag addition operations [7]. Using the system for web annotation of proof doc-
uments it defines earlier, the paper describes an encoding of collaborative tags and the applica-
tion of tags represented in this way to proof documents (Sections 3 and 3.2).

Automatically generated tags are an important case, and section 4 considers ways for these
tags to coexist with manually created ones in the system. An integrated tagging system should
allow user interface programs to work with both basic information like the location of identifiers’
definitions and more insightful tags and annotations created by mathematicians in a unified
way. Two experimental implemented systems for extracting tags automatically and exporting
them to a web annotation server are described as well.

This paper appears to be the first to explicitly consider ways to make it easier for authors
and other users of proof documents to add metadata directly linked to the objects defined in
existing documents. To summarize, the architecture, which has been developed with this idea in
mind, allows annotations and tags to be created collaboratively and represented within a unified
infrastructure while not being tied to a particular theorem proving system.

2 Challenges of Proof Script Organization

This architecture for tagging and annotation is intended to address the lack of relevant meta-
data related to objects that appear in proof documents. More metadata would be useful both to
human readers attempting to understand proof documents and to search engines indexing the
objects in proof documents to improve the experience of users looking for lemmas. Examples of
the kind of metadata that would be relevant include concise descriptions, tags, comments on
lemmas’ applicability, comments on proof technique, requests for theorems missing from theo-
ries, links to places where lemmas are used, and citations referring to alternative proofs or back-
ground on the underlying theory.

The two main reasons that there is not more of this kind of metadata associated with proof
documents are that authors often prefer to move on to prove the next lemma rather than docu-
menting the last one and that readability may suffer if proof documents are overwhelmed by
metadata. These can be said to be problems of opportunity cost and verbosity, respectively.

It is hard to argue with authors’ judgements about the opportunity costs of writing more
proofs versus documenting just-written ones, even though authors who have just finished a proof
are usually by far the best prepared to document it. Instead, it is worth considering other ways
that metadata might be created. Specifically, authors can go back and add metadata later,
other users of the definitions in a proof document can contribute metadata, and programs can
analyze the proof documents and related data to create metadata automatically. One reason
that minor metadata-related changes are not common is that, once finished, proof documents
are often inconvenient to modify in place since all other scripts that depend on them likely need
to be rechecked by the theorem prover each time. This is an important problem since it is often
only after a lemma is referenced in several places that a user may decide it is important to docu-
ment it well. If the proof document has been distributed to others, as is necessary for the second
method (in which other users add metadata) to apply, then the problems with in-place docu-
mentation increase substantially. If the distribution is limited to a small group’s versioning
repository, then, in addition to the need for all of the document’s users’ provers to do
rechecking, it is possible for the change to cause a merge conflict. In the case of wider distribu-
tion, updates by the author would need to be announced, or more likely deferred to the next
release, and the addition of metadata by users outside of the core development team is very
unlikely. Automatically generated metadata can be added at any stage that is convenient (this
is described in section 4).
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In any case, if metadata were added to proof documents at each possible stage just
described, the documents would become much longer and probably less readable due to both the
lack of a coherent structure, such as that that could be established by a single author, and the
sheer verbosity of the metadata. To avoid these problems, a common approach is to restrict
editing of metadata within proof documents to the author (or to a small group of authors) and
to also select a common policy for metadata formatting across a project. Selecting a common
policy avoids the verbosity of attempting to store all metadata possible and allows users to get a
feeling for what metadata is and is not likely to be available regarding a lemma they are
searching for, which prioritizes their search strategies. Example policies that limit verbosity and
guide authors’ insertion of metadata and users’ expectations for metadata include:

• name all results with verbose descriptive names and mark the most important ones by
using the theorem keyword rather than the lemma keyword

• generate most lemma names automatically, abbreviate the others, but put verbose
descriptions in comments when appropriate1

• use literate programming facilities, where appropriate for the theorem proving system (for
example, Chapter 4 of [14] for Isabelle)

Programmers face similar challenges when searching for functions, classes, etc., and deal with
them in analogous ways, including naming conventions, commenting, and literate programming.
However, searching for lemmas often becomes much more of a bottleneck when writing proofs
than searching for functions is when writing programs because authors of formalized proofs fre-
quently have the advantage of working directly from a well-understood but less formal version of
the same proof. This means that proof authors spend more time in translation details such as
remembering lemma names and less time thinking about novel solutions to the problem.

Also, metadata ranking the importance of particular proved results is much more useful than
metadata ranking the importance of objects in source code would be. This is because, once the
theorem prover has checked the correctness of an important proof, it is truly irrelevant which
lemmas were involved. There is no chance that a bad lemma will subtly affect the behavior of
the result contrary to the statement of the theorem, whereas, when investigating a tricky bug in
a program, almost any piece of program source code could be at fault and all parts are of equal
importance. Currently the only support that many theorem provers provide for tagging the
importance of results is the choice between using a lemma keyword or a theorem keyword when
declaring results (internally, the keywords are synonyms). Traditional mathematical language
has many other categories such as fundamental theorem, main result, technical lemma, corollary,
and trivial corollary. These gradations of importance and relationship to the overall theory are
even more important in proof documents, where the importance of results always ranges from
trivial details necessary to convince the automatic proof checker to the useful theorems moti-
vating the theory, than in ordinary mathematical text.

3 Applying Web Annotation and Tagging

The proposed architecture applies the idea of web annotation and extends it to allow annota-
tions on portions of proof documents and to allow the representation of tags in terms of annota-
tions. Web annotation explicitly addresses the problems related to comments and search criteria
having to be directly embedded into documents by completely separating annotations from the
underlying documents. It also allows incompatible theorem-organization policies to coexist, each
visible only to those who find it useful but all potentially useful data for search engines to index.

While many extensions and extra features are possible, the fundamental property of a web
annotation server is that it accepts URIs and returns a list of URIs. This is a simplistic view in
several ways, most notably because servers allow posting of new annotations, usually return
metadata as well as URIs, and may return plain text annotations instead of URIs2. Nevertheless

1. Using meaningless lemma names such as automatically generated ones is considered a legitimate approach
because it encourages users to use lemmas, instead of repeated in-line proofs, without having to worry about
naming each lemma

2. Systems can get around the limitations of servers that return only plain text annotations plus metadata by
encoding URIs as plain text and marking them as such in the metadata
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this view is a useful abstraction and it essentially describes the only property that systems for
web annotation have in common.

Various systems for web annotation exist (some are described in section 5), but the Annotea
standard [9, 17] produced by the World Wide Web Consortium (W3C) is the most general and
best-documented system in use and was chosen for use in this project. Though it is only a draft
proposal and has not been updated since 2002, it is implemented by many more systems than
competing standards: implementations of Annotea clients in the form of simple command line
programs [19], browser plug-ins [18], and web services [8] are available. There is a similar variety
of Annotea servers; [11] was used for testing.

While web annotation systems allow annotations on any type of file, XML and HTML are
the only formats for which systems commonly allow annotations on portions of files (Annotea
uses xpointer() fragments [21] to do this); this means that it is necessary to extend Annotea in
order to store annotations on portions of proof documents. There are several possible ways to do
this. The simplest system is to store a line number-column number pair. Other systems, such as
storing two line number-column number pairs (to allow ranges within files to be specified as well
using the start point and end point) and more syntax-specific systems, are possible. The system
using two line number-column number pairs is normally sufficient when the proof documents are
versioned well and not modified in-place, and it does not depend on the underlying proof syntax.
Section 4 describes a way to handle the issue of versioning using automatically generated tags.

Extending the semantics of annotations to represent tags is not difficult, but there are
important issues that can affect the robustness and extensibility of systems for doing so. For
example, the system chosen for mapping from tag names to URIs (to store in the annotation
relations) and back should be designed for extensibility of both tag name and URI syntax in
anticipation of more semantically rich extensions of the tagging idea. Also, annotations used to
represent tags instead of something else must be clearly distinguishable as such by programs
looking to operate on tags. It is similarly important to allow users of tagging-unaware programs
to filter out tags using the basic facilities of the annotation protocol so that they can view the
non-tag annotations associated with a document without the large number of very simple anno-
tations functioning as tags overwhelming the (few but important) other annotations.

3.1 Annotated Proof Documents

For a user, the first step in creating an annotation would be to select text to annotate within a
user interface for viewing or editing proof documents. This would either be done directly (using
a pointing device or cursor movement commands) or indirectly, for example by selecting an
existing annotation and indicating that the new one should use the same range as the existing
one (or, as described in section 4, that the new one should apply to the existing one itself).

The user interface or some middleware would then generate a standardized representation of
the annotation, and in particular generate the URI identifying the document or portion of a
document to which it applies. This is usually the most critical portion of a web annotation from
an implementation perspective. Unlike the URI pointing to the annotation body, it must be
expressive enough to work around existing limitations in the structure of the document it anno-
tates (such as failing to make every portion that might usefully be referenced addressable
through a meaningfully named fragment identifier) and be as robust as possible against poten-
tial future changes to the annotated document itself, or to its location, made by the publisher.
In many applications of web annotation, these challenges simply translate into fragility of the
annotations; annotations placed in stories that appear within the front page of a news organiza-
tion’s site are unlikely to work as intended for long, for example.

As an informal aid to users, proof document annotations need not be any more reliable than
any other web annotations, but reliability is always desirable and a lack of at least a basic level
of reliability could make the system useless. The reliability of the URI pointing to the annotated
document is dependent separately on the reliability of the base URI and the reliability of the
URI fragment: it is important both that the base URI continue to point to a document and that
the document remains as it was when originally annotated (for some applications, the document
may change in ways that preserve the meaning of the original annotation’s positions, or that is
likely to do so).
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For concreteness, the examples below describe the steps in posting an annotation on the
lemma Zero_not_Suc. Zero_not_Suc is defined in the file src/HOL/Nat.thy relative to the root
of the Isabelle 2007 distribution, on lines 75-76. It states that for any natural number m, 0 �
Suc m, where Suc is the successor function defined earlier in the file. The statement of the
lemma as it appears in the file is:

lemma Zero_not_Suc [iff]: "0 � Suc m"

There are various approaches to establishing canonical URIs for proof documents and objects
within proof documents. In this example the canonical URI for the Isabelle 2007 version of the
file defining Zero_not_Suc will be defined as:

http://purl.org/isabelle/2007/src/HOL/Nat.thy

Benefits of using HTTP in place of special-purpose URI schemes such as Matita and Coq’s
cic: scheme [2, 5] include compatibility with existing annotation tools and more freedom for
people to host their own proof documents within the space of URIs (using the standard DNS
and HTTP infrastructure), but this choice is arguable.

The server purl.org will redirect HTTP requests it receives to requests on another server; for
example, for any path $PATH, http://purl.org/isabelle/2007/$PATH might be configured to
redirect requests to http://isabelle.in.tum.de/2007/$PATH. The configuration can be
changed at any time by the user that created the redirect. purl.org is widely relied upon in
academia and, more importantly, is used for some of the canonical URIs in Annotea’s own
infrastructure [9]. This means that using almost any other domain name could be an additional
point of failure, whereas purl.org already is one (but one with a lot of backing behind it).

Continuing the example, the canonical URI for the portion of code defining Zero_not_Suc is:

http://purl.org/isabelle/2007/src/HOL/Nat.thy#line-column-range(75.1,76.1)

This uses a URI fragment syntax based on the XPointer framework’s fragment syntax [22] (a
much simpler subset of the xpointer() fragment syntax [21]) for referencing portions of Isabelle
theory files. The XPointer framework is an extensible syntax that allows arbitrary systems of
referencing portions of XML files to be defined without namespace collisions, but the same type
of syntax can be adopted for the URI fragments of non-XML file formats. In particular, this
more specific syntax is defined within the framework in order to refer to ranges of characters
given start- and end-points (each represented as line number-column number pairs as described
in section 3). In this case the line numbers are 75 and 76 and both character numbers are 1.

Once a complete URI pointing into the proof document to be annotated is assembled, it is
combined with the URI for the annotation itself and several other fields containing metadata to
form an Annotea RDF document. An Annotea annotation record contains at least the fields [9]:

annotates. The document annotated (a URI without a fragment)

body. The document constituting the annotation

context. The portion of the document annotated (the same URI in annotates but with a
fragment; this is the URI put together above)

creator. An identifier for the creator of the annotation

created. The annotation’s creation time

date. The time at which the annotation was last modified

type. A link to the canonical URI representing a defined annotation type

One is more likely to find one’s own annotations (and tags) meaningful and relevant than
others’, and filtering by creator can allow only one’s own annotations to be shown when that is
desirable. Also, users may want to filter annotations based on a combined creator-created or
creator-date criterion, for example with a query such as “annotations made by so-and-so when
he was refactoring this file to separate statements about natural numbers from those about posi-
tive integers.” Use of the type field for distinguishing tags from other annotations is described in
section 3.2.
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Annotea servers support five operations, posting, querying, downloading, updating, and
deleting, and the distinction between annotates and context is related to the distinction
between querying and downloading. Most notably, annotates is the only field on which
Annotea servers are required to allow queries, so in order to find any annotations that apply to
a document, all the annotations that apply to it must be requested. The annotations returned
can be filtered by the client, but querying does not return annotation bodies in order to avoid
sending unneeded annotation bodies to the client at all. The downloading operation is then used
to request the full details about a particular annotation.

3.2 Representing Tags

Figure 1. The representation of a tag using a single annotation. If an annotation server supports queries

based on the body URI as well as the annotates URI (which is an extension), then fully featured tags can

represented using a single annotation.

Figure 2. The representation of a tag using a pair of annotations. Annotation servers can by default

only be queried based on the value of the annotates field (marked with a key icon), which necessitates

the second annotation for moving back from the tag URI to the places where the tag is used.

The first step in implementing tags using Annotea is to define an annotation type for tags,
so that they can be identified as tags and treated appropriately. The default types of annotation
described in [9], SeeAlso, Question, Explanation, Example, Comment, Change and Advice, are
specific to the manual use of annotations, but the same paper encourages the creation of other
types of annotation for special purposes. The process of defining new annotation types is
described in [10]. Briefly, this involves writing an RDF schema for the new types, then setting
the type field of the annotation metadata to the canonical URI defined for the new type.

A representation of tags using a single annotation is shown in Figure 1. Assuming that web
annotation services are merely functions from URIs to lists of URIs, representing each instance
of a tag as a single annotation does not allow tag instances to be recovered on a per-tag basis
because there is no way to query the server other than by asking for annotations based on the
page that they should appear to annotate. This is a limitation even for the normal use cases of
web annotation, since users are able to link to a particular annotation but are then unable to
determine which document(s) it annotates, but is a fundamental problem for tagging.

The problem can be solved by adding a facility to the annotation server to allow querying
based on the body URI (indicated by the extra, red key in Figure 1) as well as on the anno-

tates URI. This solution is not especially easy to add to existing servers, however, and it may
be preferable to add support for a fully general RDF query language such as the Algae query
language supported by the W3C annotation server [17] or the more modern and now-standard
SPARQL [20] given the additional benefits of doing so.
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Alternatively, each tag instance can be well represented by a pair of annotations: one from
the instance to a URI representing the tag and one from the URI representing the tag back to
either the instance or the resource describing the annotation itself. If the second annotation
points back to the instance, then there is no need for the underlying web annotation system to
define URIs providing direct access to the annotation resources but it is necessary for clients to
query the server and filter out the annotations that link back to the tag URI in order to find the
tag instances. Since Annotea does define URIs for each annotation [17], which are created and
returned to the client upon posting, an Annotea-based implementation of tags can set the
second annotation to point back to the RDF annotation description resource and avoid the
reverse lookup and filtering overhead. This solution is shown in Figure 2.

The implementation of tag extraction described in the next section adopts neither of these
solutions since no client with a need to find tag instances given only the tag URI has yet been
developed.

4 Automating Tag Extraction

Besides tags manually added by users using tag-enabled Annotea clients, it is possible to auto-
mate the creation of Annotea-based tags by extracting tags that exist in other formats. The
experimental implementation includes two forms of tag extraction from Isabelle proof docu-
ments. The first simply creates Annotea equivalents of tags that users can manually add to the
files using special comment syntax, and the second produces Annotea equivalents of Isabelle’s
internal representation of identifier definitions’ locations.

A program for extracting tags that are syntactically encoded into proof document comments
is useful both to seed the tag database and to allow authors to easily add tags to the proof doc-
ument text using any text editor for later export to Annotea servers. Even though the extrac-
tion could be done by a simple lexer searching for comments and tags within them, the current
implementation uses Isabelle itself to parse the proof scripts into PGIP XML [4] (a format used
for communication between theorem proving systems and the Proof General [3] user interface
system), then extracts the comments from the resulting XML. This was done to establish infras-
tructure for other potential systems to extract tags or other information from PGIP XML.

Various syntaxes for tags within comments are possible. The current version simply treats
any whitespace-delimited word prefixed with a “@” character as a tag name. Such a simple
syntax has the benefit of being relatively non-invasive: one way to use the system is to take an
existing proof document, look for important keywords that already appear in the comments, and
prefix them with “@”. Figure 3 shows examples.

subsection {* The @classical @axiom *}

axiomsclassical: "(~P ==> P) ==> P" |

|

|

{** The classical axiom

* tags: @classical @axiom

*}
subsection

axiomsclassical: "(~P ==> P) ==> P"
(a) (b)

Figure 3. (a) Example of tags added to an existing comment by prefixing words with “@” (b) More con-

ventionally, the same syntax can also be used in a way analogous to the “@tag” field defined by documen-

tation generators. Of course an even more compatible syntax is also possible, in which tags are only those

words (not “@”-prefixed) that appear on a line after “@tag”.

The implementation of tag extraction from Isabelle’s internal tags, which represent the loca-
tion of definitions, works by streaming ML commands to Isabelle and processing the results.
While many systems have support for this type of tags already, bringing them into the same
infrastructure as annotations and user-defined tags may make both implementation and opera-
tion of tagging-aware editors (for both manual and automatic tags) simpler and more uniform.

However, adding a large number of automatically generated tags to annotation servers may
overwhelm the user-generated annotations. To prevent this, manual and automatic tags can be
given different values of type (as described in section 3.2) to distinguish them. Any Annotea
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client that supported filtering of the annotations displayed based on simple criteria such as the
value of type would then have no problem hiding one type of annotation or the other as
required by the user.

Probably the most important application of automatically generated tags is that they can be
regenerated every time a proof document changes, and so can be used as a level of indirection to
allow other tags and annotations to move seamlessly from one version of a proof document to
updated versions (and even older versions). That is, rather than putting every tag and manual
annotation related to an identifier on the region of text containing its definition, users can
instead put all tags and annotations (at least the manually entered ones) on the URI associated
with the automatically generated tag for the identifier. This way, each time a new version of the
proof document is created, a new tag linking the location of the definition in the new version to
the tag URI can be added automatically and all of the existing tags and annotations applying to
the identifier as a concept will apply to its definition in the new version as well. Figure 4 shows
an example of the arrangement of manual and automatic annotations to allow this.

(a) (b)

Figure 4. An example of how annotating (or tagging) the URI for an automatically generated tag

allows manually added tags and annotations to automatically apply to the right proof object even in new

versions of the proof document. Annotation (b) is intended to apply to Zero_not_Suc as an abstract con-

cept, no matter how the expression of it changes between document versions. Its context and annotates

fields point to the tag URI, so it is accessible from any version of the document via the tag. Annotation

(a) is very specific to version 1.0 of the document, so it annotates that version directly and it will not

automatically apply to later versions. In this diagram tags are represented using the system in Figure 1

for conciseness, but the system in Figure 2 would work as well.

5 Conclusion and Related Work

Early systems for web annotation include a single-user annotation feature in the Mosaic web
browser [13] and Röscheisen, Mogensen, and Winograd’s [15]. The idea gained more attention
with the start of the commercial service Third Voice [9] in 1999. The Annotea standard was
developed starting in 2000. Presently Annotea coexists with several incompatible commercial
services as well as some alternative approaches to the annotation problem, such as Wikalong
(which associates a wiki page with each URI) and ShiftSpace (which provides an architecture for
switching between multiple views of a web page each produced by a different plug-in).
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Dmitriev et al. [6] describe applications of web annotation systems to improve the quality of
domain-specific search results, and Asperti et al. [1] describe ways of using and explicitly
extracting metadata related to proof documents (without using web annotation) for use in
searches. [1] is not the only system for searching through proof libraries as almost every theorem
proving system has at least one such facility, but it brings most of the important ideas in this
area together in one system.

Currently the most common approach to dealing with useful but potentially distracting
metadata verbosity is code folding. This is a simple and effective approach to dealing with ver-
bosity in both the data and metadata present in program or proof code. However, since it does
not address the factors discouraging minor metadata-related changes to proof documents, nor-
mally the only metadata that it will help to hide is that that the document’s author(s) thought
to include when originally writing the proofs. Nevertheless, code folding could be useful in com-
bination with web annotation-based metadata when it is desirable to keep certain kinds of meta-
data embedded in the proof documents. More complex combinations of annotation, tagging, and
code folding could be useful too, such as having an editor fold the bodies of all the theorems in
a file other than those tagged important.

Future possibilities include more implementation, especially implementation of a tagging and
annotation client within a proof document editing interface since this is the major missing com-
ponent. Users’ experiences with a basic implementation would be very valuable for prioritizing
the addition of other features. Like Annotea web annotations themselves, compatibility with
semantic web ideas is a goal of this architecture and it is possible to extend it to include new
features and greater semantics in various ways. Marchiori has considered representing mathe-
matical statements in full detail as RDF [12], taking this idea to its logical conclusion. This is
an important long-term goal because of the potential for integrating formalized knowledge with
the rest of the semantic web. However, starting with informal annotations keeps things simple,
so that a system could be made usable relatively straightforwardly: representing metadata using
web annotation has a well-defined set of prerequisites, many of which are already satisfied by
well-tested subsets of the functionality of existing open source annotation tools.

Acknowledgements The author would like to thank Scott Owens, Georges Gonthier, Jacques
Fleuriot, David Aspinall, as well as other members of the Dream Group at the University of
Edinburgh for ideas about use cases for annotated and tagged proofs. The idea of tagging
objects in proof documents comes from Jacques Fleuriot and David Aspinall. David Aspinall
also provided many ideas to improve the paper’s organization. The author was introduced to
Annotea by Katsuhiko Tsujino, Masafumi Iwata, and Satoko Sakajō at Mitsubishi Electric.
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