
Online Mathematical Symbol Recognition using SVMs
with Features from Functional Approximation

Birendra Keshari and Stephen M. Watt
Ontario Research Centre for Computer Algebra

Department of Computer Science
University of Western Ontario

London Ontario, Canada N6A 5B7
{bkeshari,watt}@csd.uwo.ca

Abstract

We apply functional approximation techniques to ob-
tain features from online data and use these features to
train support vector machines (SVMs) for online mathe-
matical symbol classification. We show experimental re-
sults and comparisons with another SVM-based system
trained using features used in the literature. The experi-
mental results show that the SVM trained using features
from functional approximation produces results compa-
rable to the other SVM based recognition system. This
makes the functional approximation technique interesting
and competitive since the features have certain computa-
tional advantages.

1. Introduction
Online mathematical symbol recognition will be an

essential component of any pen-based mathematical in-
terface. The main advantage of such pen-based mathe-
matical interfaces over traditional keyboard-based input
methods is that they can more naturally embody the usual
two-dimensonal mathematical notations and wide range
of mathematical symbols. With the increasing availability
of pen-based devices such as PDAs, smart phones, Tablet
PCs and smart boards, interest in this area has been grow-
ing. However, the existing sytems are still far from per-
fection because of the challenges that arise from the two-
dimenstional nature of mathematical input and the large
symbol set with many similar looking symbols. Here we
address the problem of mathematical symbol recognition.

Support vector machines (SVMs) have been shown to
be suitable for symbol recognition. Earlier work [4] has
shown that SVMs can outperform other machine learning
algorithms such as neural nets, HMM and nearest neigh-
bour. A survey of different recognition algorithms in [10]
shows that SVMs perform better than HMM on different
UNIPEN data subsets. In this paper, we further explore
the power of SVM with different features obtained using
functional approximation of ink trace curves.

The movement of digital a pen on the surface of a dig-
itizer produces online data which typically contains infor-
mation including time, position, pressure and orientation
of the pen tip. Usually, different features are obtained
from these basic features (eg. change in direction) and
these are used to train a machine learning based symbol
recognizer. The accuracy of the recognizer is highly de-
pendent on the nature of the features used for training.
Different features have been used for online mathemati-
cal symbol recognition in the literature. In most previous
work with SVMs, the original coordinate data sequences
(X and Y) are interpolated and resampled and then other
features, such as resampled X and Y coordinates, sines
and cosines of turning angles, centre of gravity, relative
length etc., are obtained by straight-forward computation.
Features are usually obtained by equidistant resampling
as this produces better results than resampling in equal
time. Some of the work that has used such features are [4]
and [7]. Since the resampling rate is determined heuristi-
cally, information such as important corners can be missed
easily if the resampling rate is not high enough.

An interesting approach to obtain features is by ap-
proximating the coordinate functions X(s) and Y (s) by
truncated series in a functional basis. This technique does
not require the original data to be resampled. We use such
features to train SVMs and consider the experimental re-
sults. Earlier work [3] used K-means clustering to cluster
the symbols using features obtained by function approxi-
mation. In this work, we explore using such features with
SVMs and show our results on a larger data set and com-
parisons with other features.

The remainer of this article is organized as follows:
Section 2 presents the main ideas behind SVMs. Section
3 describes the preprocessing steps and feature extraction
techniques for two different feature sets. Features in the
first set are obtained by employing functional approxima-
tion techniques and those in the second set are obtained
after resampling. Section 4 presents the implementation
details of the classifiers. We show experimental results
and comparison between the two systems in Section 5 and
conclude with future directions in Section 6.

2. Support Vector Machines
SVMs use a supervised learning algorithm based on

the ideas of VC dimension and the structural risk mini-
mization principle [2]. They have been widely and suc-
cessfully used for pattern recognition in various fields.
The method is also known as a “maximal margin clas-
sifier” since it determines a hyperplane that separates the
two classes with the largest margin between the vectors of
the two classes. Most of problems in real life are how-
ever linearly in-separable. SVM can nicely deal with such
problems using a kernel that lifts the feature space into
higher (possibly infinite) dimension. The linearly sepa-
rable hyperplane in the higher dimensional space gives a
non-linear decision boundary in the original feature space.
The decision boundary of the SVM can then be expressed
as follows:

f(x) =
∑

i

(αiyiK(x, xi)) + b (1)

In equation (1), yi is the label of training sample xi

and x is the sample to be classified. The parameters α and
b are found by minimizing a quadratic function subject to
some constraints [2]. K(x, xi) = φ(x)·φ(xi) is the kernel
function, where φ maps the feature vector into a higher di-
mensional inner product space. The most commonly used
kernels are:

• K(a, b) = exp(−γ||a− b||2), γ > 0 (radial)

• K(a, b) = (γ(a · b) + r)d, γ > 0 (polynomial)

• K(a, b) = tanh(γ(a · b) + r) (sigmoid)

An SVM is primarily a binary classifier. However, sev-
eral SVM classifiers can be combined to do multi-class
classification. One-against-all, one-against-one and DAG-
SVM are some popular techniques used to combine binary
classifiers to build multi-class classifiers. We decided to
use one-against-one technique after studying the experi-
mental results of different multi-class classification tech-
niques applied to practical datasets presented in [15].

Figure 1 shows an example of support vector ma-
chines. The decision boundary (solid line) separates the
two classes (represented by square and circle) way such
that the margin between the two classes is maximized.

3. Feature Sets
We compared two sets of different features. Feature

Set I consisted of features obtained by functional approx-
imation. Feature Set II consisted of features from resam-
pled data as used in the literature. Details of the prepro-
cessing and extraction of the features in these sets is de-
scribed next.

Figure 1. Example of SVMs: the decision boundary
maximizes the margin between classes.

3.1. Feature Set I (Chebyshev Coefficients)

Preprocessing

In a preprocessing step, we removed the duplicate
points and then applied gaussian smoothing to remove
noise. After that, following transformations were applied
to the samples:

tnew = 2
t− tmin

tmax − tmin
− 1

vnew = 2
v − vmin

vmax − vmin

where v is x or y. This transformation places the time (t)
values in the range [−1, 1] which is the required domain
for the functional approximation. In order to preserve the
aspect ratio, x and y are scaled by the same factor and lie
in the range [0, 2].

Feature Extraction

We consider the situation where a function f : < → <
can be approximated by a linear combination of a set of
basis functions B = {bi : < → <, i ∈ N0} as:

f(t) =
∞∑

i=0

cibi(t), ci ∈ <, bi ∈ B. (2)

We can define an inner product on this linear space of
functions as

〈f, g〉 =
∫ b

a

f(t)g(t)w(t)dt

for suitable choices of a, b and “weight function” w(t). If
the basis functions are chosen to be orthogonal with re-
spect to the inner product, then the coefficients ci can be
obtained easily by computing the integrals

ci = 〈f, bi〉 /〈bi, bi〉, i ∈ N0

The series (2) is then unique for a given function.

Figure 2. Approximating f(t) = t4 using truncated
Chebyshev series.

The inner product equips the space with a norm,
〈f, f〉, and certain bases have the property that a trunca-
tion of the series (2) by setting ci = 0 for i > N gives
closer approximations to f(t) as N increases.

The coefficients ci of a truncated series can provide
very compact information about a function f . In this
work, we use Chebyshev polynomials of first kind, de-
fined by Tn(t) = cos(n arccos t), as basis functions.
These are orthogonal but not orthonormal on the interval
[−1, 1] with w(t) = 1/

√
1− t2. The coefficients are ob-

tained using the relations

ci =
2− δi0

π

∫ 1

−1

f(t) Ti(t)√
1− t2

dt, i =∈ N0. (3)

Here δi0 = 1 if i = 0 and 0 otherwise. An example
showing approximations to the function f(t) = t4 using
truncated Chebyshev series is shown in Figure 2.

The X and Y values of the sample data can be consid-
ered as two discrete functions of time t or of arc length.
We fit natural splines of degree 3 to X(t) and Y (t) to
obtain numerical functions Sx(t) and Sy(t). These two
functions were then approximated by truncated Cheby-
shev series and the coefficients ere obtained by numberi-
cal integration of (3). As these coefficients are unique and
provide useful characterizaion of the handwritten samples,
we used these coefficients as features to train the SVMs.

3.2. Feature Set II (Standard Features)

Preprocessing

During preprocessing, all the duplicate points were re-
moved from each sample and gaussian smoothing was ap-
plied to remove the noise. Each pair of consecutive points
pi and pi+1 were linearly interpolated and the resulting
piece-wise linear curve was resampled at equal distance.
Although this approach removes the time information, the

id
31

82
33

59
3

pd
fM

ac
hi

ne
 b

y
B

ro
ad

gu
n

S
of

tw
ar

e
 -

 a
 g

re
at

 P
D

F
 w

rit
er

!
-

a
gr

ea
t P

D
F

 c
re

at
or

! -
 h

ttp
://

w
w

w
.p

df
m

ac
hi

ne
.c

om
 h

ttp
://

w
w

w
.b

ro
ad

gu
n.

co
m

Figure 3. Processing steps applied to Feature Set II:
smoothing, filling missing points and resampling.

id31761781 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Figure 4. Turning Angle(θ).

result produced by such resampling is usually better than
the result obtained by resampling in time. Each sample
was normalized by preserving the aspect ratio so that it fit
a unit square. Figure 3 illustrates the preprocessing steps
applied to Feature Set II.

Feature Extraction

Feature Set II consisted of the following features: co-
ordinates of the resampled points, sines and cosines of the
angle made by the line segments joining the points in the
stroke, and the sines and cosines of the turning angle be-
tween the line segments and centre of gravity of the sym-
bol. The turning angle is illustrated in Figure 4. The centre
of gravity of the symbol is (

∑
i xi/N,

∑
i yi/N), where

N is the total number of resampled points and xi and yi

are the coordinates of the points in the stroke.

Since all these features are derived from the resampled
points they are directly dependent on the resampling rate.
Ideally a good resampling rate should not miss any shape
information such as curvatures, loops and so on. How-
ever, in practice, this rate is determined heuristically and
therefore there is no such guarantee.

4. Implementation
We stored the handwritten samples in InkML, a digital

ink format [8]. In both cases, these samples were parsed
and the online features were calculated. To train the clas-
sifiers and predict new samples we use the libsvm [1]
library. Two systems were separately trained on each fea-
ture set. All feature values were scaled between 0 and
1 before training and testing. A few kernels were tried
and the radial basis functions (RBF) were found to be the
most appropriate. These were therefore chosen as kernels
for both the classifiers. A one-verses-one algorithm was
used for multi-class classification.

Best values of γ (the RBF parameter) and C (the SVM
regularization parameter) were found by performing grid
search with γ in the range 2−15, 2−13, ..., 23 and C in the
range 2−5, 2−3, ..., 215. The features in Feature Set I were
computed using Maple [9], a computer algebra system.

5. Experimental Results
Publicly available datasets [12] were used for train-

ing and testing. The training set consisted of handwritten
samples from 11 writers (seven male and four female) col-
lected using a Hewlett-Packard Laboratories (HP) Com-
paq tc1100 Tablet PC. The symbol set consisted of 48
different symbols including a-z, 0-9,

∑
, (,), −,

√
,
∫

,
{, <, >, +, 6= and else. The training dataset consisted
of samples written 10 times by each writer and testing
dataset consisted of samples from 11 writers written 12
times each. The data was converted to InkML format [8]
to conform to our system [7] and for future portability.

Two SVM classifiers were trained separately using the
two sets of features mentioned in Sections 3.1 and 3.2.

• Feature Set I: The orders of the Chebyshev series
(maximum value of i in (2)) were set to 11. The
best of values γ and C were found by a 5-fold cross
validation technique with grid search on the training
set. The error rate of the system after testing was
found to be 7.13%.

• Feature Set II: All the samples were resampled to a
total of 30 points (Feature Set IIa). The best values
of γ and C were found by 5-fold cross validation
technique on the training set. The system had an
error rate of 5.43% on the test dataset. In order to
better compare the two systems, the samples were
resampled to 11 points (Feature Set IIb). The new
error rate on the test data was 6.51%. Another ex-
periment was performed using resampled X and Y
coordinates only (11 points) as feature vectors (Fea-
ture Set IIc). The experiment showed an error rate
of 7.28% on the training data, which is a little worse
than for Feature Set I. It was observed that remov-
ing other features from Feature Set IIb increased the
number of support vectors.

Figure 5. Comparison of error rates of different
feature sets.

6. Conclusions and Future Work

We have presented a SVM-based mathematical sym-
bol recognizer which used features obtained by the func-
tional approximation of the digital ink trace. We com-
pared the discriminating capability of such features with
other features. The experimental results showed that with
the same number of coordinate features, the functional ap-
proximation technique achieved accuracy slightly better
than the coordinate features obtained after resampling.

One of the main advantages of basing an SVM on
character features derived from numerical functional anal-
ysis techniques is device and scale invariance. Once the
degree of the functional approximation is given, no heuris-
tic analysis is required to determine suitable resampling
and ensuring resampling doesn’t obscure features. The
features (series coefficients) can be computed without re-
sampling, and trace curves recognized directly. Indeed,
characters can be completely represented by these feature
vectors and traces recovered from them if needed. Rep-
resenting characters in this way allows many high-level
geometric computations to be computed by analytic for-
mulae rather than by further numerical approximation.

We have determined the degree of functional approxi-
mation necessary to obtain the same accuracy as standard
methods for a given problem. The question remains what
degree of functional approximation should be used in gen-
eral? To see this, we think geometrically about the symbol
set. What is the number of cusps and turns that must be
represented to obtain a recognizable glyph? That num-
ber determines the maximum degree of the functional ap-
proximation. Alternatively, one can start with a notion of

maximum desired error and determine the degree of the
Chebyshev approximation required to bound this error.

The functional approach to feature extraction for
mathematical symbol recognition appears to be an inter-
esting and useful direction. We believe that there are many
promising extensions to further improve the classifier we
have described. In the future, we plan to further explore
the system by transforming X(t) and Y (t) to a geometric
invariant frame. Such features would help to incorporate
the local change in direction information into the feature
set which might improve the accuracy of the system. We
anticipate that such features when combined with the cur-
rent approach could make the system robust against ori-
entation differences of the samples. While further exper-
iments are needed to determine whether our approach is
as competitive with other character sets, there is nothing
in our method that is specific to the symbol set of the ex-
periment. (All we have relied upon is that characters are
isolated.) It is therefore a rather appealing prospect that
we might have a general approach that does not need to be
re-coded and re-tuned for each new character set.

References
[1] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a li-

brary for support vector machines, http://www.
csie.ntu.edu.tw/∼cjlin/libsvm, 2001.

[2] V. Vapnik, Statistical Learning Theory, John Wiley
& Sons, New York, 1998.

[3] Bruce W. Char and Stephen M. Watt, “Representing
and Characterizing Handwritten Mathematical Sym-
bols through Succinct Functional Approximation”,
Proc. ICDAR, 2007.

[4] Tapia, Ernesto and Rojas, Raul, “Recognition of
On-Line Handwritten Mathematical Expressions in
the E-Chalk System-An Extension”, Proc. ICDAR,
2005.

[5] Stephen M. Watt and Xiafang Xie, “Recognition for
Large Sets of Handwritten Mathematical Symbols”,
Proc. ICDAR, 2005.

[6] Elena Smirnova and Stephen M. Watt, “Combin-
ing Prediction and Recognition to Improve On-
Line Mathematical Character Recognition”, Proc.
ICFHWR, 2008.

[7] Birendra Keshari and Stephen M. Watt, “Hybrid Ap-
proach to Mathematical Symbol Recognition Using
Support Vector Machines”, Proc. ICDAR, 2007.

[8] Yi-Min Chee and Max Froumentin and Stephen
M. Watt (editors), Ink Markup Language (InkML).
http://www.w3.org/TR/InkML/, 2006.

[9] Maplesoft. Maple User Manual. Maplesoft, 2007.

[10] Eugene H. Ratzlaff, “Methods, Report and Sur-
vey for the Comparison of Diverse Isolated Charac-
ter Recognition Results on the UNIPEN Database”,
Proc. ICDAR, 2005.

[11] Claus Bahlmann, Bernard Haasdonk and Hans
Burkhardt, “On-line Handwriting Recognition with
Support Vector Machines - A Kernel Approach”,
Proc. IWFHR, 2002.

[12] http://www.graphics.cs.brown.edu/
research/pcc/.

[13] C. S. Sundaresan and S. S. Keerthi, “A study of rep-
resentations for pen based handwriting recognition
of tamil characters“, Proc. ICDAR, 1999.

[14] J.J. LaViola and R.C. Zeleznik, “A Practical Ap-
proach for Writer-Dependent Symbol Recognition
Using a Writer-Independent Symbol Recognizer”,
IEEE Transations on Pattern Analysis and Machine
Intelligence, Vol 29-1, 2007, pp 1917-1926.

[15] Chih-Wei Hsu and Chih-Jen Lin, “A Comparison of
Methods for Multi-class Support Vector Machines”,
IEEE Transactions on Neural Networks. Vol 1-13,
2002, pp 415-425.

