
MathTran and TEX as a web service

Jonathan Fine
LTS Strategic, The Open University
J.Fine@open.ac.uk

http://jonathanfine.wordpress.com

Abstract

MathTran, as a public web service, together with suitable client-side JavaScript,
the possibility of an easily deployed solution for mathematical content in main-
stream web pages.

The MathTran project is now focussed on the authoring of mathematical con-
tent. It has produced a prototype instant preview document editor. Funded by
the 2008 Google Summer of Code, Christoph Hafemeister is developing JavaScript
to provide autocompletion for commands and analysis of TEX errors, all inte-
grated with an online help system embedded in the web page. Separate work is
focussed on developing MathTran plugins for WYSIWYG editor web-page com-
ponents.

1 Introduction

The MathTran project has developed in response to
needs, funding opportunities and some underlying
goals and principles. Mostly, they have been pulling
in the same direction. The influences include:

• Respond to practical needs, particularly those
of institutions such as the Open University

• Use TEX (or a variant of TEX) for mathematical
typography

• Simplify use by providing a stateless web service

• Use JavaScript to improve the user experience

• Focus on the author and end-user experience

• Provide components for others to use

Web pages are probably both the most difficult
and important of all electronic media. The main fo-
cus of the MathTran project is to provide both pub-
lic web services that help with math on web pages
and to develop open source software that provides
such services.

The MathTran project started in late 2006,
with funding from JISC and The Open University.
Its main goals were to provide as web services trans-
lation of mathematical content from TEX to images,
and from TEX to MathML and vice versa, and from
MathML to images. In early 2007 the TEX to image
web service was running and, in response to requests
from JISC, resources were devoted to web browser
client software (in JavaScript) instead of MathML
translation.

In 2006/7 I developed and set up the public
MathTran web service www.mathtran.org. This

was done with funding from JISC and the Open Uni-
versity. It provides translation of TEX-notation for-
mulas into high-quality bitmaps. In April 2008 it
served 48,000 images a day for a growing range of
sites. After tuning, the server could provide about 2
million images a day. It takes about 10 milliseconds
to process a small formula.

The JISC funding came to an end in August
2007. Since November 2007 development of Math-
Tran has been done as part of the author’s COLM-
SCT project, and in addition Christoph Hafemeister
is doing 3 months work as part of the 2008 Google
Summer of Code. Other contributions include a
‘TEX Anywhere’ component to the Enso Windows
desktop assistant and a proof-of-concept client for
ReportLab.

At present MathTran is serving about 1 million
images a month. With some simple tuning, it could
be serving 2 million images a day. The largest iden-
tifiable group of users are Moodle sites in several
countries.

2 Pragmatic principles

In the course of the project, the following principles
emerged:

1. Relate to authors, users and developers where
they are.

2. No special or excessive server or client require-
ments for the use of MathTran.

3. Use TEX as the standard for mathematical no-
tation.

4. Use TEX to perform mathematical typography.

1

Jonathan Fine

5. Be agnostic about the user’s preferences and the
future range of display options.

6. Ignore semantic and structural aspects of math-
ematical notation.

7. Sharing code andother resources is important.
8. Favour lightweight solutions.
9. Adopt a neutral attitude to MathML.

10. Develop and provide widely used services.
There is a widespread assumption, that TEX is

too difficult for most users to learn. The project
does not adopt this assumption, and might prove it
to be false, by providing effective and focussed tools
for learning TEX.

3 Mathematics on web pages

To put a formula on a web page, the user must spec-
ify the formula. This cannot be avoided, and any-
thing is overhead that we seek to reduce. Many
people still create web pages by writing raw HTML,
and for these users a syntax such as

is about as simple as it can get. This syntax, inci-
dentally, requires the user to meet the accessibility
requirement of providing alternative text for the im-
age.

Adding the mathtran_img.js script to the
page head automatically adds to all such image tags
a src attribute, which then causes the browser to
fetch the corresponding formula (x2 + y2 = 1) from
the MathTran server.

More sophisticated output (such as MathML)
will be possible with only minimal changes, namely
a change to the included JavaScript file, once addi-
tional services such as TEX-to-MathML translation
is available.

4 TEX Standards

TEX, as is well-known, allows its users to define their
own commands, by using its macro expansion lan-
guage. LATEX is a very large and widely used col-
lection of TEX macros, that provides a front end to
the use of TEX. Without some macros, TEX is not
usable. Don Knuth, that author of TEX, provided
plain TEX, which is about 1,200 lines. The kernel of
LATEX is about 8,000 lines (not counting comments).
The popular amsmath package is 2,670 lines (again
without comments).

Provided users don’t define their own macros,
and are reasonable in their use of (La)TEX, machine
translation of their source document to, say, XML
and MathML is possible. Wikipedia uses a special
program texvc (written in Objective Caml) to val-
idate and check the LATEX notation mathematics it

stores. If authors can define their own macros, then
machine translation is much harder (and copy-and-
paste to another LATEX document can be virtually
impossible).

One of the attractions of MathML is that it
is a standard in a way that LATEX is not. However,
it is scarcely possible to author MathML directly,
whereas LATEX can be authored in this way.

MathTran provides a well-defined collection of
TEX commands for the author to use, while at the
same time preventing the definition of new com-
mands. (In addition to \def, it prevents access to
many other primitive commands, such as \csname
and \input).

It does this by creating a secure variant of plain
TEX, where all the private commands are stored in
locations which the ordinary user cannot access. As
plain TEX is only 1,200 lines, this only took a couple
of days. Creating a secure variant of LATEX would
be much more work.

MathTran does not catch every improper use of
TEX. For example, the TEX command \ne (for not
equals) corresponds to a composite of = and a can-
celling solidus /. As a result, x_\ne produces x6 =.
To get the expected x6= one must write x_{\ne}.

5 Image standards

MathTran images contain rich metadata, including
the TEX source for the image and the dvi and log
outputs due to that source. This makes it straight-
forward to edit and resize such images, or convert
them to another format, such as SVG or PostScript.

6 Other solutions

There are other solutions. Here we describe four of
them and indicate how they fit in with the Math-
Tran project.

6.1 MimeTeX

Written by John Forkosh, this is a C-program that
generates bitmaps from, roughly speaking, a sub-
set of LATEX formulas. Deployment is simple —
just compile the source and place the binary in the
cgi-bin directory. MathTran copied from mimeTeX
the query string interface. MimeTeX is quick, and
is widely used in the Moodle community and else-
where.

The MathTran server avoids some problems in
MimeTeX:

1. MimeTeX does not return error messages, even
when the input is wrong, such as \frac{1} or
\integral.

2

MathTran and TEX as a web service

2. MimeTeX does not implement all of LATEX
mathematics, and adding new features requires
writing C-code.

3. MimeTeX only approximately follows the math-
ematical typography algorithms used by TeX.
Sometimes the output is different (and worse).

4. It is not possible to convert MimeTeX output
to vector formats, such as PostScript and SVG.

6.2 JsMath

Written by Davide Cervone, this produces the best
looking output, and in particular the output scales.
It consists of client-side JavaScript that implements:

• A parser for LATEX syntax formulas

• An approximate implementation of TEX’s
mathematical typography algorithms

• A renderer for this typeset output, that uses
the web-page as a canvas

It produces good output because it uses, when
available, the TeX math fonts as outline fonts. (If
not available, it substitutes bitmaps.) In many cases
the formulas looks just as good in the browser as
they do in a PDF viewer.

Its weaknesses are

1. It is slow on large pages: JavaScript is not a
suitable language for building such a system

2. Copy-and-paste does not give good results

3. JsMath does not implement all of LATEX math-
ematics, and adding new features requires writ-
ing JavScript.

MathTran would like to use the parser and ren-
derer components. A JavaScript parser of TEX/
LATEX could be used as a component in client side
translation to MathML. It could also be used to pro-
vide a tree-view of the formula, which could help
users both understand and navigate the formula
they are editing.

The renderer could be used to display, to the
same high quality as JsMath, the typeset dvi pro-
duced by MathTran. This composite would provide,
in many circumstances, the best of both systems:
the full repetoire of TEX and the excellent display of
JsMath.

6.3 AsciiMathML

Written by Peter Jipsen, this is web-browser
JavaScript that translates mathematics in a custom
syntax into MathML. It requires a MathML en-
abled browser. The custom syntax is, loosely, based
on LATEX. One of its unusual features is that oo
translates to ∞.

AsciiMathML comes with an instant preview
textarea editor, which inspired MathTran to do
something similar.

Some of the problems with AsciiMathML are:

1. Requires MathML-enabled browser, with suit-
able fonts.

2. Has its own input syntax.

3. Does not give error message for incorrect input.

AsciiMathML provides, roughly speaking, a
client-side TEX-to-MathML translator. Something
that did this with TEX syntax and proper error re-
porting would be very useful. It could be used, for
example, as a drop-in alternative to the
mathtran_img.js script previously referred to, for
users that prefer MathML.

7 MathML

MathML is a W3C recommendation for mathemat-
ics on web pages. Despite that, it is not widely sup-
ported. FireFox 2 supports it natively, but requires
an additional download of option fonts. Internet Ex-
plorer supports it only with the third-party Math-
Player plugin from DesignScience. (Not all W3C
recommendations are successful. PNG is very suc-
cessful, and SVG moderately so. Almost no-one has
heard of or uses the InkML language for handwrit-
ing. MathML is more successful than that, but not
as successful as SVG.)

One of the big advantages of MathML is that
screen-reader software and other accessibility tools
exist for it, whereas they do not for TEX-notation
mathematics.

8 JavaScript programming

It is JavaScript that allows sophisticated display and
editing of content on web pages. The present Math-
Tran JavaScript amounts to perhaps 1,000 lines of
JavaScript code, together with use of the jQuery
JavaScript library. This is quite modest. For ex-
ample, jsmath.js is almost 6,400 lines (which im-
plements an approximation of LATEX to TEX-typeset
mathematics). AsciMathML is 3,500 lines of code.
MathDox uses over 26,000 lines of JavaScript (to
provide a GUI programming environment for math-
ematics in JavaScript).

This author has found JavaScript to be a dif-
ficult programming environment, not least because
of major differences in how the various browsers im-
plement JavaScript and provide an interface to the
browser’s Document Object Model.

3

Jonathan Fine

It is not easy to write reliable cross-browser
JavaScript, and yet this ability is crucial to the suc-
cess of any sophisticated use of the rich capabilities
provided by today’s browsers.

The MathTran project intends to provide such
code, for use as components in other systems, and
will use such code when available. It is, for example,
making heavy use of the jQuery JavaScript frame-
work.

9 Editing math on web pages

The two most widespread ways of authoring content
on a web page are to use an textarea form, or to
use a WYSIWYG HTML editor such as TinyMCE,
HtmlArea or FCKEditor. Very little if any content
is authored in any other way.

As MathTran considers mathematics formulas
to be text (in the special TEX notation), it is impor-
tant to provide support for these two methods.

9.1 Mathematics in textarea elements

For textarea MathTran has developed an instant
preview editor. The user enters a mix of text and
mathematics, using the same $ and $$ as does TEX.
As she types, so a preview of the current paragraph
is displayed on the same web page as the form. This
is the instant preview.

9.2 Mathematics in WYSIWYG HTML
editors

We have also developed an experimental plugin for
the WYM WYSIWYG HTML editor. It works by
placing custom elements in the HTML being edited,
and keeping these items up to date as the content
changes. These elements contain both the formula
in TEX notation and the image as rendered by Math-
Tran.

9.3 Autocomplete for TEX commands

As part of his Google Summer of Code project,
Christoph Hafemeister has developed an autocom-
plete device that can be used with either of these
types of editors. In its present state, when the user
types a backslash ‘\’, autocomplete is offered. This
is a list of all TEX mathematics commands known to
the system, that begin with the current string. As
the user types letters, so the list reduces. For exam-
ple, if the user has typed \ta then the commands
\tan, \tanh and \tau are offered.

10 Appropriate online help

Learning TEX notation is not exactly the same as
learning mathematics, nor is it completely different.
There is an overlap between the two realms. Part

of engineering, for example, is to know that µ is
commonly used to denote the coefficient of friction.
Also, the ability to create a µ, both on paper and
in electronic media is a useful skill for engineers.
Similar remarks go for the other subject specialities.

When writing mathematics in the TEX nota-
tion, it helps to have domain-specific help. A tradi-
tional source for this information is the TEX source
for another paper in the field, possibly written by
the user himself.

The autocomplete device can offer the user help
information on the commands, if such is availabe.
Creating such help is an important task, that is best
done with the active involvement of subject special-
ists. This might amount to 50 words on perhaps as
many as 300 TEX commands.

Some subjects will, of course, use the same com-
mands in similar ways. But for autocomplete it is
important that the offered list of commands be ap-
propriate to the users needs. For example, some who
is learning trigonometry should be offered \tan, but
to also offer \tanh would be unhelpful.

All systems for entering mathematics will bene-
fit from the creation and use of domain-specific help.
This author hopes that in the next year such help
files will be developed for at least some areas, and
will receive widespread approval. This would be a
valuable shared resource.

11 Future plans

Although there are many interesting things that
could be done by developing the MathTran TEX-
server further, the main focus for the coming year
is on making better use of the service that alread
exists. This has four aspects:
• Improved documentation for the system — for

example installation instructions for the Math-
Tran server.

• Help files for the TEX-notation for mathemat-
ics.

• JavaScript programming for the web-browser,
particularly for editing mathematical content.

• Integration of MathTran into existing systems,
such as MediaWiki, MoinMoin, Drupal and
WordPress.
This may lead to an online ‘Learn TEX’ course

delivered on the web browser, and with components
that can be readily incorporated on other web pages.

4

