
Discovering How to Write Semantic Math

with new Symbols

Eric Andrès
Competence Center Visu

Saarland University

Michael Dietrich
AG Siekmann

Saarland University

Paul Libbrecht
Competence Center for e-Learning

DFKI GmbH

Abstract

The ActiveMath learning environment is based on semantic math-
ematical formulæ encoded using OpenMath1. This gives it a chance to
render formulæ on a variety of platforms, using cultural-dependent adap-
tations, and with added-value services that may help the learners in read-
ing the formulæ.

The price to pay at authoring, however, is high since it requires encod-
ing the meaning and not only the graphical presentation of the formulæ.
Examples of challenges include the input of K[x1, ..., xn] which is well
known to represent the ring of polynomials on n variables but which does
not enjoy, yet, the support of official Content Dictionaries for the symbols.

In this paper, we explain methods we propose to discover the symbols
needed to encode expressions, the typical expressions, and the ways to
input this within the ActiveMath learning environment with jEditO-
QMath and to have it rendered. En passant, we describe requirements
on the browsing and search methods for the presentations of OpenMath
Content Dictionaries.

symbol: from Latin symbolum token, sign, symbol, from Greek sym-
bolon, literally, token of identity verified by comparing its other half, from
symballein to throw together, compare, from syn- + ballein: to throw
Merriam-Webster dictionary

One of the foundations of the manipulations of formulæ in the ActiveMath
learning environment is that they are expressed semantically in OpenMath; that
is their representation encodes their meaning. This is a strong requirement
compared to the long tradition of encoding mathematical formulæ to obtain
their typeset form. It brings along several features (such as a mathematical
search, a rendering which may help the learner, or the facility to copy-and-paste)

1http://www.openmath.org

1

and it promises interoperability with the world. Learning to write semantically
is not only an issue of technical knowledge, that is, of knowing a given syntax, it
is also a discovery of the writing methods which other mathematics authors have
been using to denote the same meaning, thus trying to use the same symbols for
the same meaning.

In the very center of this approach lies the notion of OpenMath symbols,
materialized by the declaration of an identifier within a resource called a Content
Dictionary as specified by the OpenMath standards [BCC+04]: the symbols
are declared in these Content Dictionaries (which are expected to be globally
available and browsable). However, no thorough mathematical definition is
provided, but a description comes along together with a set of formal properties
(which should be always true). They may be supported by notations and types
found close to them.

The Content Dictionaries symbols represent the semantic hook to which one
points to when speaking about the symbol, which corresponds to the definition
quoted above. This pointer is realized in XML by the OMS elements used in any
OpenMath expression to denote the occurrence of the given symbol.

The purpose of our article is this discovery: from the search and browsing
actions of others’ writing towards the ability to input the formula one intended.
This article focusses on authoring content for the ActiveMath learning envi-
ronment which uses OpenMath through OMDoc [Koh06], has a rich rendering
engine and provides a Web framework enabling the features described above.

Because authors of ActiveMath need to use content for their Active-
Math, they search symbols which they can use in this learning environment
and which they can input in such. Thus, their interest is in the way the sym-
bols are input, are rendered, are explained, and interoperate. The interest is,
thus, in their conversion methods and they tend to wish to ignore their XML
nature but the semantic value as well as the XML encoding stays present and
central as the only cross-application encoding.

1 Overview of ActiveMath Authoring

ActiveMath has, currently, one authoring tool called jEditOQMath based on
the source paradigm, whereby an author edits a readable plain text file and
activates a compilation process converting it to the OMDoc format.

The readable sources files are in OMDoc format, which enables the under-
lying editor, jEdit, to offer its services for XML editing (structure awareness,
live validation, authorized children list, ...). The XML documents, themselves,
are tamed thanks to the usage of a DTD which hides from the normal author a
large amount of useless attributes and the many namespace declarations.

Mathematical objects in the jEditOQMath practice, could be written in
OpenMath but this is typically very verbose, taking several lines for the simplest
mathematical expressions. Another way is encouraged: the compilation process
of jEditOQMath includes the OQMath process, itself encapsulating the QMath
process [?], which converts a readable linear syntax, with various binary and

2

Figure 1: The symbol for gradient

unary operator precedences, to OpenMath.
The compilation process enables jEditOQMath’s principle What You See is

What You Check: aside of converting the formulæ between $ signs, it publishes
the content collection to the local ActiveMath server: the authors can use
their content right away within the full learning environment; this is important
since using is much more than viewing, the authoring results need to be checked
for their hyperlinks, for the usage of their metadata (e.g. course generation), for
their multiple access methods, for the rendering of all formulæ they contain...

Technically, the OMDoc documents are stored in a content-storage called
MBase, which serves fragments of the OMDoc documents, which resolves ref-
erences along imports, and which can be queried for relationships between
fragments in both directions. The notation elements of the OMDoc docu-
ments are used to create the stylesheets which convert the fragments to HTML,
XHTML+MathML, or PDF through TeX. Parts of the fragments are also sent
to the computer algebra system, to the input-editor, or to the search engines.

2 Symbols in ActiveMath and their Relatives

In OMDoc, a symbol is an XML element, which has an identifier and lives
within a theory; a symbol can be given titles (commonname) and descriptions
(CMP). These can be complemented by examples and theorems, which represent
the CMPs and their formal counterparts, the FMPs, of the OpenMath Content
Dictionaries) [Koh06]. Figure ?? shows the symbol representing the mathemat-
ical concept of a gradient.

In ActiveMath, symbols are complemented by symbolpresentation ele-
ments which associate typical OpenMath expressions with their typical render-
ing. See [MLUM06] and [Lib07] for more information about them. Figure ??
shows a symbolpresentation for the gradient.

In jEditOQMath, symbols are written using the QMath syntax, which is
extensible by the usage of new symbol declarations associating sequences of
characters with the desired OpenMath symbol. QMath has symbols of various
precedences to yield a readable syntax. Figure ?? shows the declaration of the
character ∇ as a notation for the gradient.

3

Figure 2: symbolpresentation for the gradient

Figure 3: Declaration of ∇ as notation for the gradient

3 The One Shot Myth

An eager author that just wishes to write content quickly expects almost all
of the semantics to be invisible and have full automatisms, copying a formula
somewhere and just pasting into his authoring tool.

Some effort in this direction is made in jEditOQMath with the built-in paste
function: for example, this paste function will sniff the pasted content to see
if it is an OpenMath expression and convert that to a QMath expression using
the local notations. But that fails if there are unknown symbols. Moreover it
may also be far from the notation the user expects.

Similarly, efforts are underway to use the canned notations embedded in
tools such as WebEQ which can convert mathematical expressions available in
presentation-MathML(MathML-P) to Content-MathML(MathML-C), provided
the expressions in presentation actually are written with the anglo-saxon tra-
dition of mathematical notation e.g., kgV(m, n) will not be convertible (kgV is
the name of lcm in German), nor will the russian binomial coefficient notation.

As we see in the attempts above, hoping for a one shot transfer of mathe-
matical notations from one place to another imposes very strong constraints on
the compatibility of original and target contexts of the mathematical formulæ.
Context is provided routinely in normal text-books by defining notations along
the text, and in (La)TeX documents by macro definitions. The easy jump made
possible by the world-wide web, however, allows unprecedented mixing.

If transferring LaTeX expressions, the typical solution would be to obtain
the appropriate version of the package or macro-definitions, a duty that may
end-up being daunting but which otherwise allows verbatim reuse of expressions.

OpenMath expressions, and many XML-encoded expressions, have the po-
tential of providing enough information to be exchanged unambiguously from
one place to another without much other context. This transfer is generally
not fully transparent and often an author still needs to read, write, or arrange

4

the OpenMath expressions: the verbosity of the XML language is clearly not
something a normal user wishes to see everyday. XML can be easily and un-
ambiguously parsed and processed so that it remains the best way to write in
electronic communications that focus on the expressions.

In what follows below, an author will only be able to avoid reading Open-
Math if he stays in a world restricted to ActiveMath authored using (O)QMath.
Since any OpenMath expression would be written with the same QMath tool,
it would be not too hard to reproduce the context of authoring by copying
(QMath) notations and the QMath terms for each of them. However, the world
of interoperable tools with OpenMath is far greater than the world of Active-
Math authoring converters.

4 Ideal Story

Suppose that we were authoring a book about an advanced mathematical topic,
e.g., algebraic geometry. We would quickly come to a point where we recognize
the need for a new symbol which is not yet available. For the sake of example,
let’s say we would need the symbol for the quotient ring. In an ideal authoring
world we would now activate a special kind of search tool where we enter our
search query - the string ”quotient ring”. The tool, equipped with a number of
dictionaries, would start its search for the missing symbol within the local au-
thoring environment, further extending it to known repositories on the internet
as needed. This search tool would display its results as soon as the first hit is
available to allow us to stop the possibly time consuming internet search. Ac-
cording to our preferences, possibly acquired through data mining on previous
searches, the tool would rate the search results and deliver them in descending
order. A part of that rating would be a qualitative assessment of the symbol’s
semantic annotation. This could be done for example by checking the number
of languages the symbol is available in.

Starting with the first search result, we would get a list of relevant symbols.
By clicking on an entry in the search result list the tool would show an example
presentation containing the new symbol along with the underlying source. We
would only need to select the symbol that is best suited for our needs. The search
and authoring tools could perform all the required changes to our authoring
environment and we could continue the authoring process, well informed on
how to input our newly found symbol.

Sadly, we are not there yet. An analysis of the features offered by the
wonderful tool described above reveals that the process of writing math with a
new symbol can be broken down into distinct subtasks:

Find the symbol: We first need to look for the symbol to see if it already
exists

Enable the symbol: Once we have located our symbol, we need to make it
available to our authoring environment

5

Use the symbol: We certainly want to use the new symbol, but figuring out
how to do so can be a non-trivial task.

The next three sections will cover each of these tasks in more detail. In what fol-
lows, we assume that jEdit is used as authoring environment. jEdit is an editor
completely written in java, which has been enriched with a lot of functionalities
for ActiveMath content authoring. Of course other editors may also be used
for authoring, but some adjustments will be needed.

5 Methods to Find Symbols

Once we have identified the symbol we need, several questions come to mind.
What is the name of the symbol? Where can we find it, if it exists? This section
provides information on how to find symbols that are already existing. Obvi-
ously the first place to look for the symbol in question is our own ActiveMath
installation, because all symbols that are present there can be used easily.

To find out which symbols can be used in the current buffer we can use
the notation-list, a function which is a part of the OQMath Plugin for jEdit.
Figure ?? shows the notation-list in more detail. It lists all symbols that are
available in the currently opened OQMath or QMath file. These symbols are
either defined explicitly or by imported context files. The author can now search
the list for his symbol or in case the search yields no results read through the
list from top to bottom. A huge advantage of the notation-list is that it makes
the symbols imported by the contexts visible.

If the needed symbol is not contained in the notation-list, the next place is
the Symbol Presentation List (which we will just refer to by presentation-list).

When logged into ActiveMath, an author finds the presentation-list in the
’Tools’ menu bar.

In the left part of the screen we see all Collections that are loaded in this
ActiveMath instance. Depending on the installation, the number of collec-
tions varies between 2-50(or more). A collection can be viewed by activating
the checkbox left of the collection name and a click of the View-Button. To re-
duce the number of symbols presented, we may also specify the language of the
symbols and add the requirement that the symbols must have a presentation,
that means they can be rendered in a web-browser.

A fundamental collection is the openmath-cds collection which corresponds
roughly to the collection of the official Content Dictionaries. It is a good idea
to look in the openmath-cds collection for a symbol first. The search can then
be extended to other collections as needed.

If the desired symbol is not present in the local ActiveMath, the next step
in our search would be to visit http://commons.activemath.org, an Active-
Math installation which serves as a common collection repository and aims at
containing as many as possible of the collections authored thus far. Hence, the
presentation-list is very comprehensive, and the odds are good for a symbol to
be found there if it is not too special.

6

http://commons.activemath.org

Figure 4: jEditOQMath’s notation-list

7

In both of these cases, using the presentation-list has the big advantage of
letting the search be done visually, that is, by using the visual appearance as
criterion. We have experienced that this is one of the favorite ways for authors
to search for their symbols.

Another way to search for symbols in ActiveMath would be to use its
search feature.[LM06]: ActiveMath authors have a slightly different search
result. Additionally to the standard search result, their result contains symbols.
Assuming we have author privileges, we have the possibility to use either simple
or advanced search. Simple search is a text search using a lot of information
retrieval techniques (like word stemming, fuzzy and phonetic search) to deliver
an almost complete search result list. With the advanced search, more complex
search queries are possible, including search for symbols containing a specific
word and complex formulæ like assertions related to the needed symbol (deduced
from a Content Dictionary’s FMP).

The last place to search for the symbol before we are forced to create it
ourselves is the set of all OpenMath symbols in published Content Dictionar-
ies, for now this means visiting http://www.openmath.org/. We can browse
through all symbols that are contained in the Content Dictionaries by visiting
the Index of all Symbols. The browser’s search functionality is really helpful
here. It is also possible to list the symbols sorted by content dictionary which
is useful if we know the content dictionary it is in or its topic area. Reading the
Content Dictionary definition allows us to confirm that a given symbol has the
semantic we wish. If the symbol is not present here, we must create the symbol
by ourselves and ideally provide it for other authors to use.

6 Methods to Enable a Symbol Just Found

Once a symbol has been found, it needs to be enabled both for the author and
the ActiveMath system. What needs to be done in detail largely depends on
the location where the symbol has been found: it involves defining or import-
ing a QMath notation for it. Ultimately, it amounts to putting the OMDoc
representation of the symbol in a location where ActiveMath can load it.
Furthermore, we need to declare that our collection depends on the collection
the target symbol is in. This is done by declaring an ”import” relationship.
In what follows, we describe these processes in more detail, depending on the
possible locations where a symbol can be found. At this point, we assume that
the target symbol has no usable notation for the current buffer.

6.1 Symbols found in the local presentation-list or in a
local example OMDoc

Every symbol that can be displayed in the local ActiveMath can be found in
the local presentation-list, hence it is the perfect place to look for symbols. All
these symbols are already available to ActiveMath, so all that is needed is to
make the symbol available to the author, i.e., define a notation for it. In order to

8

http://www.openmath.org/

Figure 5: ActiveMath’s presentation-list

Figure 6: jEditOQMath showing the QMath prototype

do that, we first check whether there are already definitions of notations for the
symbol. In the presentation-list, on each line describing a presentation, there is
a link to a QMath notation, shown in Figure ??

Following the link opens up the presentation’s definition in jEditOQMath,
this is shown in Figure ??

We can find the QMath notation that has been used to generate the symbol’s
presentation in the notation line, behind the QMath prefix. In this example, it is
sum(a. .b, lambda(x,f)). The link between the notation and the presentation
is made more illustrated in Figure??. We now know how the notation is going
to look like, but we also know that we can not use it yet - it is not yet declared
for our buffer. We need to declare the notation, the required line inside the
QMath processing instruction is:

Symbol: sum APPLICATION "arith1:sum"

This makes the notation available to the author. What we still need to do
is to declare that our buffer now uses the symbol ”sum” in theory ”arith1”,
inducing a dependency on that theory. In order to do that, we declare an
import:

<imports from="mbase://openmath-cd/arith1/>

With that information, we can now use the notation for the symbol, Active-
Math will also be able to interpret it’s semantics. We are currently working
on an enhancement of cut and paste for jEditOQMath (that could be called
paste-attempt, which will make the necessary QMath and import declaration
automatically.

9

Figure 7: From presentation to notation

6.2 Symbols found on commons.activemath.org

As already described above, commons.activemath.org aims at being a central
information hub for ActiveMath content. At this point, we assume that the
desired symbol did not appear in the local presentation-list. Hence, we know
that it is not yet available in our local ActiveMath installation. The first task
is to figure out where to get the collection containing the symbol. If we are lucky,
we will find a direct link from the presentation-list, to the collections main and
development pages of the collection from where a download usually is available.
Otherwise, http://www.activemath.org/Content/ is a good starting place to
look for it. Once found, the collection just needs to be installed in ActiveMath
as usual,2 and ActiveMath needs to be restarted. From that point on, the
procedure to be followed is the same as in the previous paragraph.

6.3 Symbols found in official OpenMath Content Dictio-
naries with no presentation

The desired symbol may happen to be in an official OpenMath CD included
in ActiveMath, but lack any useful presentation. In that case, we will need
to define a presentation for it. A complete example for the scalar product of
vectors is:

<symbolpresentation id="scalar_product_pres"
for="mbase://openmath-cds/linalg1/scalarproduct">
<notation>

$a . b$
<math><mrow><mi>a</mi><mo>.</mo><mi>b</mi></mrow></math>

2The installation of a collection for ActiveMath is described as a task at
http://eds.activemath.org/en/inst-3

10

http://www.activemath.org/Content/

</notation>
</symbolpresentation>

The QMath-expression after the notation-tag defines the prototypical QMath-
expression that we want to use for referring to the scalarproduct symbol. In
this case, it’s the character ’.’ used as an infix operator. Below it, we put the
MathML-P expression that will be used by ActiveMath to present this sym-
bol. ActiveMath can automatically generate presentations for other output
formats based on a MathML-P expression. In order for the presentation to work
correctly, we need to define the operator ’.’ in the QMath processing instruction
and to import linalg1 as well.

6.4 Symbols found in experimental Content Dictionaries

If the symbol is found in an experimental OpenMath CD or found out in the
wild on the world-wide-web, it can not be used out of the box. We need to
download the OCD-File from the web and transform it to OMDoc so we can
make use of it. ActiveMath contains a stylesheet that does a reasonably good
transformation of OCD to OMDoc as well as a stylesheet processor that can be
used to do the transformation. The result of this transformation (if successful)
could then be placed in ActiveMath’s omdoc1/cd directory or, better, be
placed in a collection that represents the source of this Content Dictionary (for
example, the set of all Content Dictionaries made by the Riaca group at TU/e,3

or those done for the project Intergeo4. After a restart of ActiveMath, the
procedure from the previous paragraph is applicable.

6.5 Activating a new Symbol

At this point, we assume that the new symbol is available. Now, we need to
figure out how to put it to work. The information we need for this, among
others, includes the number of arguments that the symbol takes as input and
the nature of those arguments. Furthermore, we also need to check whether a
correct presentation is available.

A first approach to tackle this problem is to just play with the symbol.
We may try to use it in a way that seems intuitive, this usually works well
with simple binary symbols, e.g. the intersection of sets. These can usually be
defined as operators, which, of course, constrains usage scenarios. If the symbol
we just imported needs to be declared as an application, things tend to get
more complicated. It may be the case that the usage of the symbol at hand
is still obvious, e.g., for the vanishing ideal, it is pretty clear that it takes one
argument. However, if things are not so simple, we need to use other methods.

For symbols that we imported from the presentation-list, it is easy to find
usage examples . The location where we found our notation usually is an exam-
ple by itself, we should then be able to use the symbol in an analogous way. We

3See http://riaca.win.tue.nl/.
4See http://www.inter2geo.eu/)

11

http://riaca.win.tue.nl/
http://www.inter2geo.eu/

may also use ActiveMath’s semantic search feature to find learning objects
that use the symbol. A click on the corresponding formula right in the browser
should allow us to see the source in jEditOQMath, which we can also use as an
example.

Symbols imported from the OpenMath Content Dictionaries are documented
and usually come with examples, but those examples are provided in plain Open-
Math. At least, it allows us to see how many arguments the symbol needs, and
we can experiment with that. For this purpose jEditOQMath provides a trial
tool, called the QMath-Experimenter, which shows right away the OpenMath
result of the QMath expressions input according to the syntax defined in the
(last edited) OQMath buffer.

The only thing that we still may need to fix is the presentation of the symbol,
if none is available. For this, the procedure described in section 6.3 can be used.

Now that the symbol can be entered and displayed properly, one is only left
to make sure that this symbol has the right title, that is, the string displayed
to users when hovering around a symbol; this is done by modifying the symbol
OMDoc element, adding the necessary commonname elements.

Further checks for interoperability could be made in order for the symbol to
reach its full usage within ActiveMath:

• if one expects this symbol to be input by learners then one should care for
their ability to input it: for the Wiris input editor [MEC+06] the domain
editor should be used to enrich the palettes with the necessary button.This
is not needed if this symbol should only be shown within the copy-and-
paste (and be input copy-and-paste into as described in [LJ06] since the
notations are then used).

• if one expects this symbol to be exchanged with a computer-algebra-
system or with the plotter, each of these tools should be enriched to
support the new symbol. This procedure is generally not specified al-
though [DL08] explains the Content Dictionaries can be used.

7 Conclusion

In this conclusion, we present open research questions which this paper raises.
In this paper, we have introduced methods to re-use OpenMath symbols

from different sources. Applying the methods above is a way to avoid the cre-
ation of new symbols. This freedom to create new symbols is clearly supported
by the OpenMath standard but it breaks most tools into the unknown when
encountering it thus making the content considerably uninteroperable.

In some situations, a mild creation of a new symbol should be possible.
Examples of these include the specialization of the semantics where the symbol
we want is somewhat more precise than another existing one. FMPs can support
tools in order to realize that the new symbol is just a special case. This can be
done in several ways, described in [DL08] but one still needs a special-case

12

symbol which would enable even the notations-processor to use the notations of
the more general case if a notation for the special case is not available.

A recurring theme that has appeared in this paper is the ability to paste
which should, if all the context is ready for it, simply be a one shot action; as
we have described, this often fails but is still often attempted. Examples in
OpenMath of the usages of a symbol as indicated in the previous section are,
currently, already pastable in jEditOQMath which will try to be smart enough
to convert it to QMath with the local notation. Since the context is often not
the same, this often fails.

This issue raises the strong need for the management of the notations along
with the content elements of management, in OMDoc, the theories and the
imports; this has been attempted in [MK07], and, indeed, runs a high risk of
conflicts of notations which, then, need to be managed.

Moreover, this raises the need for a concretization of any notation informa-
tion to enter the XML (and OMDoc) reference architecture. This is the case
of the symbolpresentation elements of ActiveMath already. However, even
though best-practice dictates that OQMath files are OMDoc files, the current
OQMath tool is currently purely text-oriented; it is, thus, almost impossible to
query the OQMath notation that has been used to encode a given formula.

An important architectural issue we have also met lies in the architectural
separation of the authoring tool, expected to run on the client, and the Ac-
tiveMath server: indeed, currently, it is not possible for an author to use the
mathematical syntax of his authoring tool, for example, to search for formulæ
in the search tool; only the input editor is available in this tool. This is due to
the fact that the ActiveMath server, although mostly running on the same
host as the authoring tool client, ignores the architectural details of authoring
tool. We shall explore web-service based methods to enable such a context-
aware conversion, maybe even relying on the browser communicating directly
to the authoring tool.

The final challenge of an author that has gone his way into using a new
symbol is probably to cleanly expose his contribution as a retro-contribution to
the community:

• having re-used the OMDoc symbol of an existing ActiveMath collection,
contact should be made so that it can be contributed to the existing collec-
tion. This raises the necessity of a publicly visible development web-space
for each content-collection where a community is reachable.

• having enriched a Content Dictionary, the result of this enrichment should
be submitted for enhancement of the ActiveMath software (as an issue of
its issue tracker) and/or of the Content Dictionaries on openmath.org/cd
(probably as a post to the om-discuss@openmath.org mailing list).

13

References

[BCC+04] Stephen Buswell, Olga Caprotti, David Carlisle, Mike Dewar, Marc
Gaëtano, and Michael Kohlhase. The openmath standard, version
2.0. Technical report, The OpenMath Society, June 2004. Available
at http://www.openmath.org/.

[DL08] James H. Davenport and Paul Libbrecht. The freedom to extend
openmath and its utility. Journal of Computer Science and Math-
ematics, 2008.

[Koh06] Michael Kohlhase. OMDoc: An Open Markup Format for Math-
ematical Documents [version 1.2], volume 4180/2006 of LNCS.
Springer Verlag Heidelberg, 2006. See http://www.mathweb.org/
omdoc.

[Lib07] Paul Libbrecht. Content dictionary notations. In Proceedings of
the OpenMath Workshop, Linz Austria, 2007, 2007. See http://
jem-thematic.net/node/167.

[LJ06] Paul Libbrecht and Dominik Jednoralski. Drag and Drop of For-
mulae from a Browser. In Proceedings of MathUI’06, August 2006.
Available from http://www.activemath.org/~paul/MathUI06/.

[LM06] Paul Libbrecht and Erica Melis. Methods for Access and
Retrieval of Mathematical Content in ActiveMath. In
Nobuki Takayama, Andres Iglesias, and Jaime Gutier-
rez, editors, Proceedings of ICMS-2006, number 4151 in
LNCS. Springer Verlag GmbH, september 2006. Avail-
able from http://www.activemath.org/pubs/bi.php?id=
Libbrecht-Melis-Access-and-Retrieval-ActiveMath-ICMS-2006.

[MEC+06] Daniel Marquès, Ramon Eixarch, Glòria Casanellas, Bruno
Mart́ınez, and Tim Smith. WIRIS OM Tools a Semantic Formula
Editor. In Proceedings of MathUI’06, August 2006. Available from
http://www.activemath.org/~paul/MathUI06/.

[MK07] Normen Müller Michael Kohlhase, Christine Müller. Docu-
ments with flexible notation contexts as interfaces to math-
ematical knowledge. In Proceedings of MathUI 07, Linz.,
2007. See http://www.activemath.org/workshops/MathUI/07/
proceedings/Kolhase-et-al-DocumentNotations.html.

[MLUM06] S. Manzoor, P. Libbrecht, C. Ullrich, and E. Melis. Authoring pre-
sentation for OpenMath. In Michael Kohlhase, editor, Mathemat-
ical Knowledge Management: 4th International Conference, MKM
2005, Bremen, Germany, July 15-17, 2005, Revised Selected Papers,
volume 3863 of LNCS, pages 33–48, Heidelberg, 2006. Springer.

14

http://www.openmath.org/
http://www.mathweb.org/omdoc
http://www.mathweb.org/omdoc
http://jem-thematic.net/node/167
http://jem-thematic.net/node/167
http://www.activemath.org/~paul/MathUI06/
http://www.activemath.org/pubs/bi.php?id=Libbrecht-Melis-Access-and-Retrieval-ActiveMath-ICMS-2006
http://www.activemath.org/pubs/bi.php?id=Libbrecht-Melis-Access-and-Retrieval-ActiveMath-ICMS-2006
http://www.activemath.org/~paul/MathUI06/
http://www.activemath.org/workshops/MathUI/07/proceedings/Kolhase-et-al-DocumentNotations.html
http://www.activemath.org/workshops/MathUI/07/proceedings/Kolhase-et-al-DocumentNotations.html

[Pal06] Alberto González Palomo. QMath: A human-oriented language
and batch formatter for OMDoc. [Koh06], chapter 26.2. See http:
//www.mathweb.org/omdoc.

15

http://www.mathweb.org/omdoc
http://www.mathweb.org/omdoc

	Overview of ActiveMath Authoring
	Symbols in ActiveMath and their Relatives
	The One Shot Myth
	Ideal Story
	Methods to Find Symbols
	Methods to Enable a Symbol Just Found
	Symbols found in the local presentation-list or in a local example OMDoc
	Symbols found on commons.activemath.org
	Symbols found in official OpenMath Content Dictionaries with no presentation
	Symbols found in experimental Content Dictionaries
	Activating a new Symbol

	Conclusion

