
1

Authoring Interactive Exercises in
ActiveMath

Giorgi Goguadze a, Jan Tsigler b,
a University of Saarland, Saarbrücken, Germany, george@activemath.org

b German Research Institute for Artificial Intelligence
(DFKI) Saarbrücken, Germany, tsigler@activemath.org

Abstract.
This paper describes an authoring environment for exercises in a web-

based learning environment ActiveMath. This tool offers WYSIWYG
authoring of multi-step interactive exercises, represented as finite state
machines, in which the authors can visually manipulate the graph of an
exercise, edit the states and transitions of an exercise and run the edited
exercise in each step of its creation. It combines features similar to those
of systems such as Maple T.A.TM for creating tests and assignments
and Pseudo Tutors created with CTAT - Cognitive Tutors Authoring
Tools.

The user interface for editing steps of an exercise with interactive ele-
ments is comparable to the one in Maple T.A.TM, also semantic evalua-
tion of the learners answer using a Computer Algebra System (CAS) is
possible. Among other features, similar to Maple T.A.TM is a possibil-
ity to create parameterized exercises using randomized variables in the
exercise solution space.

On the other hand, visualizing the exercise graph and authoring dif-
ferent solution paths by modeling possible learner’s answers (correct or
incorrect) is similar to the behaviour recorder of CTAT when authoring
Pseudo Tutors. Also the highly semantic knowledge representation of
an exercise allows for further semantic analysis of the log data after the
learner’s interaction with an exercise.

1. Introduction

Interactive exercise sub-system is one of the major components of ActiveMath
– a web-based interactive learning environment for mathematics. ActiveMath
system incorporates several components, tools and external services that make
use of underlying semantic knowledge representation of content and form a user-
adaptive platform for technology-enhanced learning (see [7]).

The role of interactive exercises is crucial, since the results of interactivity of
the system with a learner within an exercise are the main source of information for
learner model component that is responsible for assessing the current mastery of
the learner w.r.t. the domain concepts. This information about the mastery is then
the basis for further adaptive actions of the ActiveMath system, e.g. presenting
different additional instructional items and finally suggesting new exercises. This



2 Goguadze et al. /

closes the global feedback loop in the system. For more details about the global
feedback in ActiveMath see [8].

On the other hand, the exercises provide a large room for adaptive scaffolding
on a micro level via usage of different tutorial strategies that define the way how
an exercise should be rendered. For example, the strategy can decide whether
or not to give the learner a second chance to answer the question in the task in
case of a wrong answer, when to provide feedback and which type of feedback is
currently the most appropriate, and so on. For more information about tutorial
strategies for ActiveMath exercises see [6].

The architecture of ActiveMath exercise sub-system allows for manually
authored, as well as fully or partially generated exercises. It also allows for au-
tomatically enriching manually authored exercises by applying different tutorial
strategies to them [2].

In general, a multi-step solution of a mathematical problem can have one or
more correct solution paths. When solving a problem the learner can also follow
erroneous paths. The set of all correct and erroneous paths can be viewed as a
directed graph. An interactive exercise can be seen as an automaton in which the
learner is moving step by step on this graph and each next node he is visiting
depends on the answer he provides for the tasks in the previous nodes. The nodes
of the graph can be annotated by the teacher with additional feedback, providing
hints, help on errors etc. By definition, a mathematical model of a system with
discrete inputs and outputs and finite number of states is a finite state machine
(see e.g. [3]). In our case nodes of the graph are the states, input is the answer
of the learner and the output is the presentation of the feedback and the task in
the next state to the learner.

Therefore, an exercise is represented as a finite state machine of states rep-
resenting tutorial actions of the system and transitions between those states rep-
resenting reactions upon learner’s answers to the tasks in the exercise states.
Exercise states and transitions have themselves complex internal structure.

Each exercise state consists of a task to be performed by a learner, possible
feedback to the actions of the learner in a previous exercise state and interactive
elements such as fill-in-blanks, multiple-choice-questions, orderings or mappings
that will be used by the learner in order to provide the answer to the task. In each
of the textual parts of the exercise state arbitrary text with formulas, images and
other multimedia and formatting elements is allowed.

Tasks and feedbacks are also annotated with domain- and educational meta-
data which are necessary for updating the learner model and tutorial strategies
to be applied to the exercise.

Each transition issued in a state of an exercise consists of a condition to
be satisfied by the learner’s answer in order for this transition to fire. It also
contains diagnosis information that is necessary for updating the learner model
of ActiveMath with the information about learners mastery changes. Finally,
it contains a pointer to the next state to which the system will change if this
transition fires.

Example. Consider a simple exercise, in which the learner has to differentiate
the function f(x) = 2 · x. The solution space of this exercise is shown in the
Figure 1. The first state (state1) of our finite state machine defines a task to



Goguadze et al. / 3

Figure 1. A simple exercise graph

calculate (2x)′. If the learner’s answer is equal to 2 · (x)′ the next state will be
state2, in case the learner entered the final correct answer 2 he is forwarded
directly to the state state4. In all other cases, the default transition is triggered
and the learner is forwarded to the state3. The states that do not define any
transitions are final. As soon as the final state is reached the exercise terminates.
In our example state3 and state4 are final.

The authoring tool we present in this paper offers visual authoring for exercise
states and transitions, visualizing exercise as whole in form of a graph, as well
as providing WYSIWYG editing of micro-structure of states and transitions and
the direct testing of intermediate results of authoring via running the authored
parts of the exercise in an exercise player.

Since the authoring tool is embedded into the ActiveMath system it has
direct access to the exercise sub-system and other components of ActiveMath
such as knowledge base, search tool, formula editor and the presentation system
of ActiveMath, which are effectively reused in the tool.

2. Main Interface

Similarly to the behaviour recorder of CTAT when authoring Pseudo-Tutors (see
[4]), the states of exercises and transitions between them are represented in form
of a graph. This graph shows the paths the author defines in a solution space
of an exercise. Simultaneously to the graph representation, the authors can edit
individual states and transitions in an almost WYSIWYG structure editor. It is



4 Goguadze et al. /

Figure 2. Exercise authoring interface

almost WYSIWYG in sense that additionally to the presentation of the content
the markers for its micro structure are also visible, just like in a traditional Mozilla
Composer for HTML pages.

The window of the authoring tool consists of 3 main frames, shown in the
Figure 2. On the right side is the visualization of the exercise structure in form of
a graph, the vertexes of which are representing the states on an exercise and the
edges represent the transitions between those states. The upper frame on the left
side is for editing the states of the exercise and the lower frame on the left side
is for defining transitions. The tool also provides pop-up interfaces for authoring
metadata of the relevant parts of the exercises using cascading drop-down menus.

3. Visualizing Exercise Graph

The sample graph of the exercise nodes and transitions between them is shown
in the Figure 3. By right-clicking at on the node of the graph the context menu is
called in which the author can select one of the options - edit the state, running
the exercise starting from this state, or deleting the state. By deleting the state
all the transitions to and from this state are deleted as well. When selecting the
edit option, the exercise state is loaded into the state editor window and the
transitions issued at this state are loaded into the transition editor window.



Goguadze et al. / 5

Figure 3. Sample exercise graph

4. Editing Exercise States

In the state editor the author can enter text with formulas, insert images, tables
and other usual formatting elements. For doing so, the author calls a pop-up
microstructure editor window by clicking on ’text’ button in the side-bar. The
microstructure editor window is shown in the Figure 4. The author can enter text
in several languages by switching to the corresponding tab in the microstructure
editor. The formulas are edited in the separate formula editor field on the top left,
reusing the formula editor component of ActiveMath. The created formulas can
be then inserted into the text.

For inserting images, tables and other media and formatting elements the
author clicks on the corresponding icons in the toolbar of the microstructure
editor.

In order to author interactive elements the microstructure editor is reused
in different ways. For authoring blanks, only the formula editor is used with the
special blank symbol in the palette. In case of a simple blank, only the blank
symbol is inserted from the palette. The full power of a formula editor is needed
in cases dealing with blanks inside complex formulas.

For authoring multiple choice selections, the microstructure editor is used as
well enriched with an additional button in the toolbar, separating the already
authored choices from new ones. Sample authoring of blanks and selections is
shown in the Figure 5

The interface of microstructure editor is similar to the corresponding part of
the authoring tool in Maple T.A.TM. The formula editor in ActiveMath looks
similar to the traditional Equation editor in Microsoft Word. The difference is,
however, that the underlying generic semantic representation for mathematical



6 Goguadze et al. /

Figure 4. Microstructure editor window

Figure 5. Authoring blanks and selections

formulas – OpenMath [9] makes it possible to evaluate these expressions with
external mathematical tools such as computer algebra systems. Underlying rep-
resentation of formulas produced in Maple T.A.TM editor is using the syntax
MapleTM. In contrast, expressions encoded in OpenMath can be evaluated with
several different computer algebra and other mathematical reasoning systems,
providing these systems are available for usage and the mapping from and to the
OpenMath syntax (phrase book) is provided. Within EU project LeActive-
Math, phrase books and connections to several Computer Algebra Systems were
implemented (see [1]).



Goguadze et al. / 7

5. Defining Transitions

Transitions are defined in the transition editor in which the author specifies the
type of a transition, the corresponding diagnosis, and a condition, in which the
learner’s answer is compared in a certain context to the control expression entered
by the author.

The diagnosis information to be authored contains the achievement of the
learner w.r.t. to the task in a current exercise state in case the transition fires,
relevance of the learner’s answer w.r.t. the completion of the task and the relations
to the diagnosed misconceptions in case the condition in the transition is matching
a particular incorrect answer.

Defining a condition for a transition is not entirely similar to the authoring-
by-doing procedure in CTAT behaviour recorder, since the author needs to do
more then just simulate the learner’s answer. The condition has to be annotated
with the context of the evaluation, e.g. whether we expect syntactic (or literal)
comparison, or maybe numeric or semantic evaluation using CAS. For more in-
formation about the different evaluation contexts in ActiveMath exercises, see
[1].

Semantic evaluation of the learner’s input using CAS is, naturally, the most
powerful feature of Maple T.A.TM. The full power of MapleTM is at author’s ser-
vice and any CAS command can be applied to the learner’s answer. In contrast to
Maple T.A.TM, we abstract from CAS-dependent commands and perform purely
mathematical operations upon the learner’s answer, the semantics of which is
clear enough to be understood by several different CAS or other mathematical
reasoning systems.

Apart from usual conditions in which the expected answer of the learner is a
string, mathematical expression, or a result of selecting choices in multiple choice
questions, the author can define conditions matching other actions of a learner
such as hint requests, giving up on the exercises and so on. Also the default
transition, which fires if none of the conditional transitions match can be defined.
Authoring sample transitions is shown in the Figure 6.

6. Authoring Parameterized Exercises

Similarly to Maple T.A.TM, the exercise authoring tool provides a possibility to
author exercises in which the exercise task and solution space are randomized.

Using the pop-up interface shown in the Figure 7 the authors can define cus-
tom variables together with the sets of possible values for them and use these
variables in the authored exercise. Currently, the possible values are always inte-
gers. In order to add a new possible value the author clicks the red ’+’ button on
the right side which appeares for each newly defined variable. In order to delete
existing values the blue ’-’ button has to be used. This interface has to be ex-
tended in the near future, since the exercise system already has support for more
complex sets of possible values.

As soon as the variables are defined they appear as special symbols in the
pallette of the formula editor and can be used within formulas in all relevant parts
of the exercise tasks, feedbacks and conditions.



8 Goguadze et al. /

Figure 6. Defining transitions

Figure 7. Authoring Randomizer variables

When starting such an exercise, each time the variables to be randomized are
instantiated with random values taken from the range defined by the author and
these values are propagated throughout the whole solution space of the exercise.
This way, the whole class of exercises is authored at once by authoring one highly
annotated randomized exercise.



Goguadze et al. / 9

7. Conclusion and Future Work

Summarizing, the authoring tool for exercises in ActiveMath offers visual au-
thoring of solution spaces of complex multi-step interactive exercises annotated
with feedback, hints and different types of transitions, using semantic evaluation
for reducing the solution space by collapsing the semantically equivalent answers
of the learner. Such exercises can be rendered using different tutorial strategies,
that facilitate learning.

Now a couple of words about possible future developments.
Due to the highly semantic knowledge representation of exercises, and in-

telligent reporting facilities of the exercise sub-system of ActiveMath the re-
sults of the interaction of many learners with the same exercise can be collected
and analyzed. For each exercise state, the answers of different learners that did
not match any condition in the transitions issued at this state can be semanti-
cally analyzed and compared to each other. This provides a basis for identifying
common conceptual and procedural errors of learners. Using the results of such
log data analysis, the exercise can be further enhanced by author who can add
transitions that diagnose particular misconceptions and provide remedial actions
against such errors in the places in the exercise when they likely occur.

Another interesting direction of further development is recording different
aspects of behaviour of the author while creating an exercise. For example the
author would enjoy the possibility to define the template for the structure of
the exercise by creating several first steps together with some transitions and
reuse this template for authoring next portion of steps. For instance, author could
specify, that for each state of the exercise, containing a new task, he always makes
three transitions and three corresponding next states, containing e.g. feedbacks
for correct answer, incorrect answer and a hint.

Also, the exercise authoring tool does not yet fully support all the expres-
sive power of the exercise language. For example, still to be implemented is the
interface for authoring complex constraints to be satisfied for the learner’s an-
swer in case of multiple answers in one interaction that can not be evaluated
component-wise, but as a whole.

Finally, the exercise editor has to be continuously extended to support new
add-ons to the exercise system providing the authors with features that facilitate
exercise authoring, e.g. extensions that allow for randomizing over continuous
intervals and sets of functions, etc..

References

[1] G.Goguadze, ”Generic CAS Interaction”, Deliverable D25, LeActiveMath Consor-
tium, 2005.

[2] G. Goguadze, A. González Palomo, E.-Melis, ”Interactivity of Exercises in Active-
Math”, Towards Sustainable and Scalable Educational Innovations Informed by the
Learning Sciences - Sharing Good Practices of Research, Experimentation and In-
novation, Edited by Chee-Kit Looi, David Jonassen, Mitsuru Ikeda, Frontiers in
Artificial Intelligence and Applications, Volume 133, pages 109 - 115, 2005,



10 Goguadze et al. /

[3] J.E. Hopcroft, J.D. Ullman, ”Introduction to Automata Theory, Languages, and
Computation”, Adison-Wesley Series in Computer Science ISBN 0-201-02988-X,
1979

[4] K.R. Koedinger, V. Aleven, T. Heffernan, B. McLaren, and M. Hockenberry, ”Open-
ing the Door to Non-Programmers: Authoring Intelligent Tutor Behavior by Demon-
stration”, In the Proceedings of 7th Annual Intelligent Tutoring Systems Conference.
Maceio, Brazil, 2004

[5] Maple T.A.TM Website, <http://www.maplesoft.com/products/mapleta>
[6] E. Melis. Choice of Feedback Strategies. In D.G. Sampson Kinshuk and P. Isaias, ed-

itors, Cognition and Exploratory Learning in the Digital Age (CELDA 2005). IADIS,
iadis, dec 2005.

[7] E. Melis, G. Goguadze, M. Homik, P. Libbrecht, C. Ullrich and S. Winterstein,
”Semantic-Aware Components and Services of ActiveMath”, British Journal of Ed-
ucational Technology, (ISSN 0007-1013), vol. 37(3), pp. 405-423, Blackwell Pub. May
2006

[8] E. Melis and C. Ullrich, ”Local and Global Feedback”, AI in Education AIED-2003,
ed. U. Hoppe, F. Verdejo and J. Kay, pp. 476-478, IOS Press, 2003

[9] The OpenMath Standard, <http://www.openmath.org>


