
MathEX: A Direct-Manipulation Structural

Editor for Compound XML Documents

Samuel S. Dooley
Integre Technical Publishing Co., Inc.

sam@integretechpub.com

Abstract

This paper describes how MathEX addresses a number of well-known
issues with direct-manipulation structural user interfaces for mathematics.
The solutions described here allow MathEX to support a diverse collection
of XML vocabularies for mathematics, including Content and Presenta-
tion MathML, XHTML+MathML compound documents, and OpenMath
semantic markup. This paper illustrates how MathEX allows an applica-
tion author to tailor the user experience within a specific XML vocabu-
lary, within a specific document, or within a specific collection of elements
within a document, without the need for a modal interface. MathEX al-
lows an author to customize the notational presentation, keyboard editing,
structural palettes, and other properties of each operator in a document,
whether or not the operator is known to the editor in advance. MathEX
is implemented in Java, and may be used as a stand-alone application, as
a web page applet, or as a Swing component within another application.

1 Introduction

Direct-manipulation editors for mathematical expressions appeared over twenty
years ago, shortly after windowing systems with point-and-click user interfaces
[1, 2, 3, 4, 5]. Over the next several years, user interfaces for general-purpose
computer algebra systems, as well as more specialized mathematical applica-
tions, began to include direct-manipulation expression editors [6, 7, 8]. The
amount of effort required to develop such an interface, or to port one from
one operating system to another, limited general acceptance of these interfaces
to major software vendors, and motivated research into standard protocols be-
tween front-end user interfaces, responsible for defining the user experience, and
computational engines, responsible for producing a desired result [9, 10].

Partly as a way to specify these protocols, and partly as a response to the
World Wide Web, mathematical software vendors came together over ten years
ago to define a standard encoding for presentational and structural information
for mathematics, the Mathematical Markup Language (MathML) [11]. MathML
provides a formal separation between presentation markup elements and content

1



markup elements, and its introduction created an opportunity for the develop-
ment of general-purpose, content-based, direct-manipulation structural editors
for mathematical expressions [20]. This separation between structure and pre-
sentation became a driving force behind a number of XML web standards, most
visibly XSL Transformations and XSL Formatting Objects [12, 13].

A second driving force behind XML web standards was the realization by
a number of user communities, including the mathematical community, that
web browsers could not support a broad range of specialized markup vocabular-
ies. Specifications such as XML Namespaces [15], XML Schema [14], XHTML
Modularization [16], and the Compound Document Framework [17], when taken
together, provide a representational model for document profiles composed of
a collection of document types; yet this model does not address major issues
involved in authoring compound documents for mathematics.

MathEX [21] began as a research project to develop a content-based, direct-
manipulation structural editor for mathematics, originally known as the IBM
MathML Expression Editor [22, 23, 24]. Initially, this editor used the IBM
techexplorer Hypermedia Browser [25] as its core rendering engine. After the
MathML portion of the techexplorer rendering engine was reimplemented in
Java, the current implementation of MathEX was realized as a stand-alone Java
application, a Java applet, and a Swing component.

This paper describes how MathEX addresses a number of well-known issues
with direct-manipulation structural user interfaces for mathematics. The so-
lutions described here allow MathEX to support a diverse collection of XML
vocabularies for mathematics, including Content and Presentation MathML,
XHTML+MathML compound documents, and OpenMath semantic markup.
This paper illustrates how MathEX allows an application author to tailor the
user experience within a specific XML vocabulary, within a specific document,
or within a specific collection of elements within a document, without the need
for a modal interface. MathEX allows an author to customize the notational
presentation, keyboard editing, structural palettes, and other properties of each
operator in a document, whether or not the operator is known to the editor in
advance.

2 Direct Manipulation Issues

MathEX addresses a number of well-known issues with direct-manipulation
structural user interfaces for mathematics, including flexible coordination be-
tween presentational and structural representations of mathematical expres-
sions, detailed configuration of interactive editing behaviors, and transparent
extensibility to new content operators. This section describes the MathEX so-
lutions for these issues and how these solutions provide significant advantages
to a direct-manipulation user interface for mathematics.

2



2.1 Representation

A direct-manipulation editor that operates using only the presentational form
for an expression cannot capture the computational structure of an expression
in an unambiguous fashion. A direct-manipulation editor that operates using
only the structural form for an expression cannot provide the kind of natural
visual interaction that users expect. To resolve this trade-off, MathEX main-
tains both a structural form and a presentational form for each expression as
it is created. This dual representation allows a user to interact with the vi-
sual presentation of an expression, while simultaneously creating the underlying
structural form for the expression. Each user interaction in MathEX operates
within this framework—presentational aspects operate in terms of the presen-
tational form, while structural aspects operate in terms of the content form.

MathEX obtains several advantages from this dual representation. Keyboard
bindings operate directly on the content form to provide a natural and unam-
biguous linear input model, while presenting a high-quality two-dimensional
presentational form with each keystroke. Lexical error checking is eliminated,
as each editing operation creates only well-formed content expressions. The
visual presentation of an expression defines cursor navigation, with an explicit
visual indication of the underlying content structure of the current expression.
Visual palettes of editing operations are defined in terms of the transformation
to be applied to the content form, and are displayed in terms of the presenta-
tional form corresponding to the transformation. While each of these objectives
can be accomplished in other ways, the flexibility of the MathEX dual represen-
tation is exemplified by its use as a foundation for a configuration framework
for content operators, as described in the following paragraphs.

2.2 Configuration

MathEX describes each content operator by a collection of properties that spec-
ify interactive behaviors associated with the operator, and encodes these proper-
ties into operator declarations that define, for the MathEX interface, the editing
behavior of a content operator. Every aspect of the presentational and structural
behavior of a content operator is determined by these operator declarations.

Layout declarations provide transformation rules that convert a content form
to a presentation form. Editing declarations provide transformations from a
predecessor content form to a successor form, and provide key bindings that
incrementally elaborate a content form. Additional properties define an oper-
ator precedence relation that affects when the presentational form will insert
parentheses, and how far up the content structure an editing transformation
will apply, to produce the expected presentational and structural forms from a
sequence of keyboard operations. Other properties carry specialized collections
of presentational or editing conventions, such as for additive, n-ary, or array
operators. Any conventional interaction in MathEX, whether presentational
or structural, is captured by a configuration declaration that specifies which
content operators participate in the conventional behavior. Many of these con-

3



ventional interactions affect both presentational and structural aspects of an
operator, or the relationship between the presentational and structural forms
for an expression. The MathEX dual representation allows these declarations to
be made explicit, and to be associated with a content operator in a completely
data-driven fashion.

MathEX provides a standard configuration file that contains a default col-
lection of content operator declarations, and that defines the usual behavior of
the editor. An application developer may use the MathEX API to create ad-
ditional declarations, to remove existing declarations, or to replace the entire
collection with another configuration. A developer can thus create an entirely
new behavior for the editor, with respect to any content operator, whether or
not the operator is known to the editor in advance.

2.3 Extensibility

Because every conventional interaction that MathEX provides is controlled by a
configuration declaration, new content operators may participate in predefined
behaviors with the same status as the MathML standard content operators. An
end user may define a custom content operator in MathEX simply by applying
a new function symbol to a collection of arguments, and a default collection of
operator declarations will apply to the new operator until other declarations,
that apply specifically to the operator, override the default behavior.

The extent of the MathEX operator declaration framework means that the
introduction of a new content operator can be as ordinary, or as elaborate,
as necessary for a particular application. As a result, full customization of a
new content operator is primarily the responsibility, not of the end user, but
of the application developer, who will use the MathEX API to create a custom
configuration that defines the editing behavior of the new content operator.
More extensive user interfaces to assist the application developer in writing
MathEX operator declarations are under investigation.

3 XML Vocabularies

MathEX supports a diverse collection of XML vocabularies for mathematics,
including Content and Presentation MathML, XHTML+MathML compound
documents, and OpenMath semantic markup. Each of these document profiles
places its own unique demands on the authoring user interface, and illustrates
the challenges involved in the compound document authoring task. The fol-
lowing paragraphs describe how MathEX addresses the unique aspects of these
various XML vocabularies.

3.1 Content and Presentation MathML

MathML is unusual in that it provides markup elements that represent both
presentational and structural information, as distinct language subsets within a

4



single namespace. This design reflects the fact that mathematical expressions,
more than other vocabularies, employ extensive interactions between the struc-
tural and presentational properties of an expression. MathML thus presents a
special challenge to a direct-manipulation editor because each interaction ini-
tiated by the user may have consequences for both the presentation and the
structure of an expression.

MathEX addresses this duality in its user interface by maintaining both
structural and presentational representations for each expression, as described in
Section 2. Since the user interface has access to both representations, MathEX
is able to convert a potential liability—that is, the need to maintain multi-
ple representations for an expression—into an opportunity, namely, the ability
to enrich the user experience by accurately capturing the presentational and
structural aspects of each interaction. By further extending this duality with
an operator declaration framework, the duality of the MathEX representation
yields a collection of control points that an application developer may use to
tailor the user experience for a wide range of mathematical applications, some
of which are illustrated in Section 4.

The extensive nature of the interactions between content and presentation
MathML markup provides a robust setting for exploring representational issues
for a direct-manipulation editor. The design decisions needed to manage the
relationships between content and presentation markup in MathML provide
parallels to design decisions that are needed for other XML vocabularies. The
MathEX solutions to these issues for mathematical markup provide a basis for
extending the editor to address these and related issues for other namespaces.

3.2 XHTML+MathML Compound Documents

XHTML [18] provides markup elements that represent textual information con-
tained in a document. A document profile for XHTML+MathML compound
documents provides a framework for including mathematical information into
textual documents. However, this document profile imposes new requirements
on the authoring interface, since typical editing conventions for text are much
different than for math. Authoring interfaces for these documents, such as
the equation editor within Microsoft Word, often provide a modal environment
composed of two applications or components working together, where one com-
ponent provides a mode optimized for editing text, and another component
provides a mode optimized for editing math.

One objective of the MathEX operator declaration framework is to adapt
the MathEX editing component to a broad range of editing applications. While
previous experience has demonstrated that the MathEX operator declarations
are sufficient to encompass a wide range of mathematical operators and their
notational and interactive behaviors, extension of these operator declarations to
nonmathematical structural input is ongoing. Early investigations have demon-
strated that a basic textual editor for XHTML presentational markup can be
configured using the MathEX operator declarations, although a number of im-
plementation issues remain, including rendering optimizations appropriate for

5



Figure 1: MathML and OpenMath Markup in MathEX

textual content, selection models for range and multiple selection that accom-
modate text and math, and more flexible user interaction models for collections
of attribute value assignments.

By extending the operator declaration framework to encompass XHTML
elements, MathEX is able to provide a seamless transition in editing behavior
across namespace boundaries, and to accommodate the differences in expecta-
tions in editing behavior for textual and mathematical content. To illustrate
these capabilities, Section 4 includes a user interface customization example that
involves editing conventions for multiple content types in the same document.

3.3 OpenMath Semantic Markup

OpenMath [19] provides structural elements that are similar to content MathML
elements, as well as additional elements that define aspects of the semantic be-
havior of structural operators in the context of one or more content dictionar-
ies. A user interface with the capability to preserve the distinction between the
structural and semantic properties of an operator has the potential to realize
a degree of flexibility similar to what MathEX obtains by the separation of
structural and presentational information for mathematical expressions.

The operator declaration framework in MathEX is sufficient to capture the
structural aspects of OpenMath markup, with each OpenMath symbol defined
as a custom operator in a MathEX custom configuration. It is then straightfor-
ward to extend the custom configuration to allow a user to edit mathematical
expressions using the same key bindings, menus, and palettes used to create
Content MathML, and yet have the editor produce OpenMath expressions in-
stead. At the level of the user interface, the end user need not know whether
the underlying representation is Content MathML or OpenMath: the interactive
experience is the same. (Figure 1)

A truly semantic user interface for OpenMath should provide operations that
leverage the semantic knowledge contained in the content dictionaries to provide
new kinds of interactions that enrich the user experience. In the same way that
a structural editor provides operations that preserve the structural integrity of
a mathematical expression, a semantic user interface should provide operations
that preserve important semantic properties of the expressions in a document.
Examples of such properties could include equality and order relationships in

6



Figure 2: Directed Exploration Exercise in MathEX

a domain, or logical relationships such as equivalence and implication. While
these types of operations have been outside the scope of the MathEX interface,
the MathEX API allows external applications to be aware of these relationships
and to implement editing operations that respect them on an equal footing with
the structural editing operations that are more common in editing applications.

4 Application Illustrations

MathEX provides a collection of control points that an application author may
use to tailor the user experience within a specific XML vocabulary, within a spe-
cific document, or within a specific collection of elements within a document,
without the need for a modal interface. This section describes application ex-
amples that illustrate the flexibility of the operator declaration framework and
the kinds of interaction models that can be realized using the MathEX user in-
terface. By embedding MathEX as a Swing component and using the MathEX
API, application designers can incorporate these mathematical interaction mod-
els into a wide range of scientific, technical, and educational applications.

4.1 Directed Exploration

The ability to restrict the scope of a declaration to a specific document allows
MathEX to define nontraditional user interfaces for particular applications such
as directed explorations of mathematical concepts. An author for an interactive
textbook, for example, could define one such specialized user interface to guide
student focus on strategic choices for one exercise, and an entirely different user
interface for the next exercise, where the choice of the user interface can be
made to reinforce specific pedagogical goals.

Consider the following exercise. A student is presented with an equation,
involving only constants and operators, but where the operator symbols have
been removed from the equation. The student is then challenged to select op-
erator symbols to satisfy the equation. A reasonable user interface for such
an example would present the equation with placeholder elements in place of
the operators, and the remaining constants in the appropriate places. Several
alternative means can then be provided to allow the student to supply the miss-
ing operators, including keyboard bindings, mouse actions, or menu or palette
selections. (Figure 2)

The author can realize this example in MathEX using a collection of custom
operator declarations to define the presentation of the problem statement and
the keyboard, mouse, menu, and palette actions that allow the student to select

7



Figure 3: Localized Currency Interface in MathEX

the operator. Any additional programming is then limited to the selection of
the constants and operators in the problem statement and in the evaluation of
the student response, not to the implementation of the user interface used to
collect the student response. Since much of the development time for a new
application is spent in the implementation of the user interface, the MathEX
operator declaration framework results in a significant reduction of the amount
of effort needed to create these custom interactions.

4.2 Localization

Software developers expend enormous resources adapting their applications to
regional user interface conventions, including choice of language, reading or-
der, and various other features. Even for information as mundane as currency
amounts, there are at least five dimensions that define the presentation of a
currency amount for a particular locale: currency symbol, currency symbol po-
sition, thousands separator, decimal separator, and number of digits past the
decimal point.

Within a mathematical editor, these conventions affect not only how a cur-
rency amount is presented, but also the behavior of key bindings for the digits
and separators—bindings which apply only to currency amounts, and not nec-
essarily to other text in a document.

As a simple example, consider the presentation of a two-column table, where
the first column is to contain customer names, and the second column is to
contain currency amounts. When entering a customer name, MathEX operator
declarations allow the end user to enter text in the linear form natural for text.
When entering a currency amount, MathEX operator declarations that apply
only to the second column of the table allow the end user to enter the currency
amount in the linear form natural for the currency amount, and in the currency
format natural for a particular locale. Regardless of the locale, the structure of
the end result in the document is a tagged currency amount that is presented
in the appropriate currency format. (Figure 3)

The ability to define the scope of a declaration in terms of a collection of
elements in a document allows MathEX to combine multiple data types within
a single document, where the user interacts with each data type using editing
conventions that are most appropriate for that data type.

8



5 Conclusions

5.1 Compound Documents

The literature describes a growing number of successful direct-manipulation user
interfaces for specific mathematical applications [26, 27, 28, 29]. The strengths
and weaknesses of these interfaces have been extensively investigated, and are
well-understood by the mathematical software community. Standard markup
languages for mathematics promise to broaden the reach of mathematical soft-
ware into diverse fields of science, technology, and education. However, these
applications require authoring tools that can integrate mathematical markup
into other markup vocabularies. Compound XML documents provide a frame-
work for combining content markup from several domain-specific vocabularies,
including mathematics, into a single document. However, the compound doc-
ument authoring task poses special problems for the user interface, including
how to customize the user experience for each vocabulary, and how to integrate
these diverse user experiences into a unified whole. Solutions for these issues,
insofar as they relate to mathematical content, promise greater insight into the
more general compound document authoring problem, in much the same way
that markup solutions for mathematics helped to frame early discussions toward
markup solutions for other web standards.

5.2 MathEX Solutions

MathEX provides an extensible basis for user interfaces for a broad range of
content-aware mathematical applications. The extensibility of the MathEX user
interface—provided by the dual representation of presentational and structural
forms and by the the content operator declaration framework—allows MathEX
to address a number of well-known issues with direct-manipulation structural
user interfaces, and to support a diverse collection of XML vocabularies, includ-
ing Content and Presentation MathML, XHTML+MathML compound docu-
ments, and OpenMath semantic markup. The operator declaration framework
provides a collection of control points that an application author may use to
tailor the user experience within a specific XML vocabulary, within a specific
document, or within a specific collection of elements within a document, without
the need for a modal interface. These solutions allow MathEX to provide a cus-
tomizable user interface for authoring compound XML documents that include
structural, as well as presentational, mathematical markup. These compound
documents, when combined with custom user interfaces that define their behav-
ior, provide an intuitive interactive experience for the end user, and leverage
the rich structural information provided by content mathematical markup.

References

[1] Smith, C. J. and Soiffer, N. M. MathScribe: A User Interface for Com-
puter Algebra Systems. In Char, B. W., ed. Proceedings of the 1986 Sym-

9



posium on Symbolic and Algebraic Computation. New York: ACM Press,
pp. 7–12.

[2] Tektronix, Inc. MathScribe User’s Manual. Tektronix, Inc., 1988.

[3] Soiffer, N. M. The Design of a User Interface for Computer Algebra Sys-
tems. Ph.D. thesis, Computer Science Division, EECS Department, Univer-
sity of California, Berkeley, 1991.

[4] Bonadio, A. and Warren, E. Theorist: Reference Manual. Waterloo,
Ontario: Prescience Corporation, 1987.

[5] Paracomp, Inc. Milo: The Math Processor for the Macintosh (User’s
Guide). Paracomp, Inc., 1988.

[6] Wolfram, S. The Mathematica Book, fourth ed. Cambridge, UK: Cam-
bridge University Press, 1999.

[7] Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Mon-

agan, M., and Watt, S. M. Maple V Language Reference Manual. New
York: Springer-Verlag, 1991.

[8] MathSoft, Inc. Mathcad: User’s Guide with Reference Manual. Cam-
bridge, MA: MathSoft, Inc., 2001.

[9] Leong, B. L. Iris: Design of a User Interface Program for Symbolic Algebra.
In Char, B. W., ed. Proceedings of the 1986 Symposium on Symbolic and
Algebraic Computation. New York: ACM Press, pp. 1–6.

[10] Purtilo, J. Applications of a Software Interconnection System in Math-
ematical Problem Solving Environments. In Char, B. W., ed. Proceedings
of the 1986 Symposium on Symbolic and Algebraic Computation. New York:
ACM Press, pp. 16–23.

[11] Carlisle, D., Ion, P., Miner, R., and Poppelier, N. Mathematical
Markup Language (MathML) Version 2.0 (Second Edition). W3C Recom-
mendation REC-MathML2-20031021, W3C, 21 October 2003.
http://www.w3.org/TR/2003/REC-MathML2-20031021.

[12] Clark, J. XSL Transformations (XSLT) Version 1.0. W3C Recommenda-
tion REC-xslt-19991116, W3C, 16 November 1999.
http://www.w3.org/TR/1999/REC-xslt-19991116.

[13] Berglund, A. Extensible Stylesheet Language (XSL) Version 1.1. W3C
Recommendation REC-xsl11-20061205, W3C, 05 December 2006.
http://www.w3.org/TR/2006/REC-xsl11-20061205.

[14] Fallside, D. C. and Walmsley, P. XML Schema Part 0: Primer (Sec-
ond Edition). W3C Recommendation REC-xmlschema-0-20041028, W3C,
28 October 2004.
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028.

10



[15] Bray, T., Hollander, D., Layman, A., and Tobin, R. Namespaces
in XML 1.0 (Second Edition). W3C Recommendation REC-xml-names-
20060816, W3C, 16 August 2006.
http://www.w3.org/TR/2006/REC-xml-names-20060816.

[16] Altheim, M., Boumphrey, F., Dooley, S., McCarron, S.,

Schnitzenbaumer, S., and Wugofski, T. Modularization of XHTML.
W3C Recommendation REC-xhtml-modularization-20010410, W3C, 10
April 2001.
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410.

[17] Mehrvarz, T. and Appelquist, D. Compound Document Framework
1.0 and WICD 1.0 Profiles. W3C Working Draft WD-WICD-20050915,
W3C, 15 September 2005.
http://www.w3.org/TR/2005/WD-WICD-20050915.

[18] W3C HTML Working Group. XHTML 1.0 The Extensible HyperText
Markup Language (Second Edition). W3C Recommendation REC-xhtml1-
20020801, W3C, 01 August 2002.
http://www.w3.org/TR/2002/REC-xhtml1-20020801.

[19] Buswell, S., Caprotti, O., Carlisle, D. P., Dewar, M. C.,

Gaëtano, M., and Kohlhase, M. The OpenMath Standard, Version
2.0. The OpenMath Society, June 2004.
http://www.openmath.org/standard/om20-2004-06-30/.

[20] Dooley, S. S. Coordinating Mathematical Content and Presentation
Markup in Interactive Mathematical Documents. In Gloor, O., ed. Pro-
ceedings of the 1998 International Symposium on Symbolic and Algebraic
Computation. New York: ACM Press, pp. 54–61.

[21] Dooley, S. S. Users Guide for the Integre MathML Expression Editor,
Version 1.2.1. Albuquerque, NM: Integre Technical Publishing Co., 11 April
2005.
http://www.integretechpub.com/docs/zed/Users/.

[22] Dooley, S. S. Bringing MathML Content and Presentation Markup to
the Web with the IBM MathML Expression Editor.
http://www.mathmlconference.org/2002/presentations/dooleyxml/.

[23] Dooley, S. S. Editing Mathematical Content and Presentation Markup
in Interactive Mathematical Documents. In Mora, T., ed. Proceedings of
the 2002 International Symposium on Symbolic and Algebraic Computation.
New York: ACM Press, pp. 55–62.

[24] Dooley, S. S. Programming the IBM MathML Expression Editor for
Interactive Mathematical Applications. In Cohen, A. M., Gao, X.-S.,

and Takayama, N., eds. Proceedings of the First International Congress
of Mathematical Software ICMS 2002. Singapore: World Scientific, 2002,
pp. 421–431.

11



[25] Integre techexplorer Hypermedia Browser Documentation. Albuquerque,
NM: Integre Technical Publishing Co., 2003.
http://www.integretechpub.com/docs/techexplorer/Help/.

[26] Marquès, D., Eixarch, R., Casanellas, G., Mart́ınez, B., and

Smith, T. J. WIRIS OM Tools: A Semantic Formula Editor. In Lib-

brecht, P., ed. Proceedings of the 2006 Mathematical User-Interfaces
Workshop, St Anne’s Manor, Workingham, United Kingdom, 10 August
2006.
http://www.activemath.org/~paul/MathUI06/index.html.

[27] Libbrecht, P. and Jednoralski, D. Drag-and-drop of Formulæ from a
Browser. In Libbrecht, P., ed. Proceedings of the 2006 Mathematical User-
Interfaces Workshop, St Anne’s Manor, Workingham, United Kingdom, 10
August 2006.
http://www.activemath.org/~paul/MathUI06/index.html.

[28] Kume, M., Miyamoto, A., Kai, H., Tominari, T., Noda, M.-T., and

Tamura, Y. Mathematical Document Authoring with xfy. In Libbrecht,

P., ed. Proceedings of the 2006 Mathematical User-Interfaces Workshop, St
Anne’s Manor, Workingham, United Kingdom, 10 August 2006.
http://www.activemath.org/~paul/MathUI06/index.html.

[29] Thimbleby, H. and Thimbleby, W. Mathematical Mathematical User
Interfaces. In Libbrecht, P., ed. Proceedings of the 2006 Mathematical
User-Interfaces Workshop, St Anne’s Manor, Workingham, United King-
dom, 10 August 2006.
http://www.activemath.org/~paul/MathUI06/index.html.

12


