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Abstract

All Turing Complete calculators are mathematically equivalent, and therefore mathemati-
cal user interfaces need not innovate beyond what is absolutely necessary. Typically, user
interfaces are character-based and imperative, with mice used to select windows, and modes
used to control the hidden complexities of the system.

Using Mathematica and xThink as representatives of the state of the art in interactive
mathematics, we show conventional mathematical user interfaces leave much to be desired,
because they separate the mathematics from the context of the user interface, which remains
as unmathematical as ever.

We put the usability of such systems into mathematical perspective, then we compare
the conventional approach with our highly interactive approach, as exemplified by TruCalc.

1 Introduction

For thousands of years, we’ve been doing maths by using pencil and paper (or equivalent: quill
and scroll, stick and sand — whatever). When calculating devices were invented, this helped us
think, but we still did maths on paper. Then, comparatively recently, computers were invented,
and for the first time we could replace pencils with typed text and get results written down
automatically, and then, later, we could replace paper with screens

Turing famously presented a formal analysis of what doing mathematics entailed [11]. He
argued any pencil and paper workings could be reduced, without loss of generality, to changing
symbols one at a time from a fixed alphabet stored on an unbounded one dimensional tape.
Symbols are changed according to the current state of the device and the current symbol on the
tape. The Turing Machine, which can be defined rigorously (and in various equivalent forms),
was a landmark of mathematics and computing. Indeed, the Church-Turing Thesis is that all
forms of computing, and hence mathematics, can be ‘done’ by a Turing Machine in principle.

“Computing is normally done by writing certain symbols on paper. In elementary
arithmetic the two-dimensional character of the paper is sometimes used. But such
a use is always avoidable, and I think that it will be agreed that the two-dimensional
character of paper is no essential of computation. I assume then that the computation
is carried out on one-dimensional paper.”

A. M. Turing [11]

Here, Turing’s use of the term ‘computing’ is historical; he is referring to human computation
on paper.
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Figure 1: Example of problematic interaction in Mathematica.

While Turing is formally correct, good choice of notation is crucial to clear and efficient
reasoning. Moreover, almost all notations (for example, subscripts) are two dimensional, as suits
pencil and paper — and the human visual system.

2 Conventional mathematical interaction

Without loss of generality, mathematicians use pencil, paper and optionally erasers. Pencils are
used to draw forms, or to cross them out. Typically, adjacent forms are related by a refine-
ment. Harder to capture formally, the mathematician’s brain stores additional material, which
is typically less organised than the representation on paper. One might argue that much of the
mathematician’s work is to find a mapping from what is in their head onto marks on paper,
which is an iterative process, and then to map that and previously unstated thoughts to a linear
representation such as LATEX, so that the organised and checked thoughts can be communicated
to other brains.

When this process is computerised, the forms are linearised into some character sequence.
A string, typed onto ‘paper’ or a VDU left to right, is transformed by the computer inserting
the values of designated expressions. Around and after the 1970s, the sequential constraint was
relaxed: the underlying model is incremental as before, but the user can ‘scroll back’ and edit any
string. Now the values computed may have no relation to the preceding strings, because the user
may have changed them: the old output may be incorrect relative to the current string. More
recently, from the late 1980s on, the user interface supports multiple windows, each scrollable
and editable, each with an independent user interface much like a typographically tidied up 1970s
VDU. Of course, this gives enormous flexibility for managing various objects of mathematical
concern (proofs, tactics, notes. . . ) [6], especially when supplemented with menus and keyboard
commands, but the generality and power should not distract us from the relation of the user
interface to doing the mathematics itself. Normally we focus on the maths, and ignore the
interface; it is just a tool to do the maths, not of particular mathematical interest itself.

Consider Mathematica. A Mathematica notebook is a scrollable, editable document repre-
senting the string. Certain substrings in the notebook are identified, though the user can edit
them at any time and in any order. A set of commands, typed or through menu selection, cause
Mathematica to evaluate the identified substrings, and to insert the output of their evaluations.
It is trivial to create Mathematica notebooks with confusing text like that shown Figure 1, which

2



illustrates the inconsistency problem (is x 5 or 8?) as Mathematica separates the order of the
visible document from the historical order of editing and evaluation. In the example above, the
x = 5 may have been edited from an earlier x = 8; the Print may have been evaluated after an
assignment x = 8 evaluated anywhere else in the notebook; or the Print may have been edited
from something equivalent to Print["x is 8"] — and this is not an exhaustive list. In short,
to use Mathematica a user needs to remember what sequence of actions were performed. (In
fact, Mathematica helps somewhat as it can show when a result is possibly invalid.)

Although the presentation can be confusing, the flexibility is alluring. While the mathemati-
cian can keep the editing and dependencies clear in their head, the notebook (or some subset of
it) will make sense.

Mathematica and similar systems add notational features, generally so that they can present
results in conventional 2D notation. Instead of writing a linearised string, such as 1/2, the user
selects a template, from a palette of many 2D forms. The symbols can then be over-typed
by 1 and 2, to achieve (in this example),

1
2 . Such mechanisms allow the entry of forms such as∫ ∞

0

sinx2 e−x dx and 1 +
1

1 + 1
1+ 1

1+1+ 1
1+···

exactly as shown here with relative ease.
In Mathematica a function TraditionalForm achieves the inverse: presenting evaluations us-

ing standard 2D notation. While these 2D notations look attractive (and indeed are considerably
clearer for complex formulae, especially for matrices, tensors and other such structures), they do
not alter the semantics or basic style of interaction.

Padovani and Solmi [2] provide a good review of the interaction issues of using 2D notations,
such as Mathematica and other systems use. They argue that 2D notation requires a model,
namely the internal representation of the structure, which is not visible in the user interface.
Hence, for the user to manipulate the 2D model new operations are required. The model itself is
not visible, so inevitably 2D notation introduces modes and other complexities. That is, it looks
good, but is hard to use. Editing operations are performed on non-linear structures (e.g., trees),
but the displayed information does not uniquely identify the structure. Like the criticisms of
Mathematica above, to use a 2D structure requires a user to remember how they built it; worse,
what the user has to remember (Padovani and Solmi argue) does not correspond with the user’s
mental image of the mathematics being edited.

xThink is a different mathematical system [12], and its model is directly based on a 2D
representation. xThink recognises the user’s handwriting in standard notational format, and
can compute the answer which is displayed adjacent to the hand-written sum. Provided xThink
recognises the user’s writing reliably, the internal model of the formula is exactly what the
user wrote. Nothing is hidden. In this sense, xThink solves the problems Padovani and Solmi
elaborate, though not all of the problems we attributed to Mathematica (as we shall see below).

A typical “page” from xThink is shown in Figure 2. Its advantage over Mathematica’s
template-based approach is the ease and simplicity of entering mathematics, however its in-
teraction style retains the problems of Mathematica’s — there is no guarantee the ‘answers’ are
in fact answers to the adjacent formulae, and furthermore xThink has introduced new handwrit-
ing recognition problems; that is, the formula evaluated may not ever be one that was thought
to have been written down!
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Figure 2: Example of xThink, showing natural handwriting notation combined with calculated out-
put. Picture from xThink’s web site [12]; the original is in several colours, making the input/output
distinctions clearer than can be shown in greylevels. In the picture, xThink has just parsed a hand-
written

3
√

123, shown its interpretation at the bottom of the screen (as 12∧3∧(1/3)=12), and has
inserted a result in a handwriting-like font below the formula.

3 Principles for mathematical interaction

With such a long and successful history of procedural interaction it is hard to think that it
could be improved; systems like Mathematica are Turing Complete (upto memory limitations).
Interactive mathematical systems, such as Mathematica and xThink, are clearly very powerful
and have a very general user interface. The book A = B [3] gives some substantial examples of
what can be achieved.

Notwithstanding their completeness, it is interesting to observe that the representations these
mathematical system work with are not referentially transparent nor are they declarative. That
is they only do mathematics that is ‘delimited’ in special ways, and the user has to ‘suspend
disbelief’ outside of the theatre that is so delimited. As a case in point, we gave the example
above of x not having the value it appeared to have (see Figure 1); even allowing for the se-
mantics of assignment, there is no model like lvalues and rvalues that maintains referentially
transparency [5], without some subterfuge such as having a hidden subscript on all names —
which, of course, must exist in the user mind (if at all) if users are to do reliable mathematical
reasoning.

Such Fregean properties as referential transparency are key to reliable mathematical rea-
soning. Another is his idea of ‘concept’ that has no mental content, that is, a concept is not
subjective. Most interactive systems require the user to conceptualise (i.e., make a mental model
of) the interaction; they have modes, hidden state dependencies, delays, separated input and
output and so on.

It is ironic that modern mathematical systems are so flexible that they compromise the core
Fregean principles — though [7] shows, under broad assumptions, any string-based (i.e., Turing
equivalent) user interace interaction properties such as modelessness and undo are incompatible.
Modelessness is, of course, an HCI term covering issues such as side effects, referential trans-
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parency, declarativeness, substitutivity, etc. Essentially, a purely functional interface is modeless;
if one cannot have modelessness and undo (under the assumptions of [7]), any such user inter-
face must be compromised for mathematical purposes. Such observations beg questions: is it
possible to modify the style of interaction to preserve the core mathematical properties — and
what would be gained by doing so?

4 Highly mathematical interaction

We will use xThink below to make a side by side comparison with our novel interface to highlight
the difference between a truly mathematical system and one that is not.

Both our calculator and xThink ’s calculator from first glance appear to do the same things.
In fact xThink ’s calculator seems to be more powerful, it can handle annotation, multiple sums,
more complex mathematics. Yet ignoring a bullet point comparison and the superficial similarity
of the two programs, they are in fact very different.

Both calculators provide a user interface based on handwriting recognition. But this is where
the similarity ends!

Our calculator, TruCalc, was designed from generative user interface principles [7]; in con-
strast, xThink seems to merely add the idea of utilising the affordance [1] of pen and paper
without escaping Mathematica-style problems.

To better illustrate the differences between these two superficially similar interfaces we will
describe the interaction a user employs to solve a simple sum, along with the potential pitfalls.

4.1 xThink v TruCalc

A first example problem we compare finding the value of “(4 + 5)/3” in xThink and in our
calculator, TruCalc. In both, the user starts by writing the sum on the screen, using a pen (or
using their fingers on suitable touch-sensitive screens).

1a In xThink , the user must press a special button to get the handwriting recognised. The
handwriting is recognised in a separate window, which the user must read to check the
accuracy of the handwriting recognition. If the handwriting is miss-recognised by xThink
then without checking the small text at the bottom of the screen the user can easily be fooled
into thinking they have the correct answer. The text at the bottom of the screen is both
small and linearised, losing the benefit of the handwritten 2D notation — for example the
cube root of a half is printed as (1/2)^(1/3).

1b In TruCalc, as the user writes, the hand-written characters and numbers are converted
to typeset symbols without any further user action. The user feels as if they are writing in
typeset characters, and confirming recognition is as natural as checking your own handwriting
is legible.

2a In xThink, to determine the answer, the user must press another button, and the answer is
displayed somewhere on the screen. In Figure 2 all such answers have been positioned under
their respective formulae.

2b In TruCalc, the typesetting includes solving the equation. In this case, the screen will show a
typeset 4+5

3 = 3 — the user wrote 4+5
3 and the computer inserted = 3 in the correct position.
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3a In xThink , to determine the answer, the user’s input must be syntactically complete (an
expression). For example, to find the value of

√
4 the user must write exactly this (and it

must be recognised correctly).

3b In TruCalc, answers are provided even with incomplete expressions, as well as with equations.
For example, to find the value of

√
4 the user can write

√
then 4, or 4 then

√
, and they

can write = if they wish. In any case, the value 2 or =2 is also displayed. Furthermore,
if the user wrote

√
= 2, then TruCalc would insert 4 appropriately, thus solving a type of

equation where xThink would require the user to write 22 (which is notationally different).

4a In xThink, the user’s handwriting can be altered and hence make the answer (here, 3) invalid.
Or several answers may accummulate if the user evaluates formulae and does not remove old
answers.

4b In TruCalc, as typesetting includes solving the equation, the user could continue and write
= or = 3 themselves. In particular, if they wrote an equation, such as 4+

3 = 3, TruCalc
would solve it, and insert (in this case) 5.

5a xThink provides no other relevant features.

5b In TruCalc, the editing of the user’s input is integrated into its evaluation. Thus the user
can then continue to write over the top of this morphed equation, adding in bits that they
consider are missing. For example, if the RHS 3 is changed to 30, the display would morph
to 4+86

3 = 30.

It is possible to edit by inserting, overwriting and by drag-and-drop to a bin to delete them,
or to other parts of the equation to move them. In all cases, the equation preserves its
mathematical truth, as TruCalc continually revises it. TruCalc also provides a full undo
function, which animates forwards and backwards in time — also showing correct equations.

4.2 In-place visibility

With TruCalc the replacement of the user’s handwriting with typeset symbols not only provides
an immediately neat and tidy (and correct) equation but also provides immediate visible feedback
of what was recognised. The displayed typeset equation is the equation that the answer is shown.
This in-place visibility removes confusion and miss-understanding over what the calculator is
doing, and whether it has miss-recognised bad handwriting.

In our experiments with TruCalc [9], one of the outstanding results was that whilst users
made intermediate errors, no user stopped on a wrong answer. We believe this was because the
calculation they were performing was entirely visible and unambiguous to them in an in-place
2D notation.

Without in-place visibility, the user may be unsure which results correspond with which
inputs. This compromises mathematical reliability; the user has to rely on their head knowledge.

4.3 No hidden state; modelessness

Hidden state and modes compromise mathematical reasoning. Hidden state affects how to in-
terpret input and output; specifically, modes are hidden state (e.g., knowledge of history) in the
user’s head that is needed to know how to control the user interface predictably.

Typically, a system does not show what mode it is in, but the mathematical interpretation of
its display depends on the user knowing some hidden state. For example, in xThink to erase or
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move parts of the equation the user has to select different tools at the bottom of the screen, then
when they have finished they have remember they are in a special mode and reselect the pen
tool. The xThink interaction style makes this cumbersome approach unavoidable in principle.
The relative meanings of displayed results obviously changes when other images are modified;
simply, they may become wrong.

The xThink user also has to be aware that once they have finished an equation they have
to press the Enter button, this time switching mental modes from “entering” to “getting the
answer.” If they don’t change modes, there is no result shown for the problem.

With TruCalc there are no modes or hidden state, and no user context switching. Not only
is there no menu of different tools but there is no need to switch mental modes or to pause and
press an Enter button to make things work. This greatly simplifies the user’s mental model and
reduces the effort required to use the calculator.

4.4 Instant declarativeness

A system may show the mathematically right answer when the user asks for it; but until they
ask for computation, the mathematics is strictly incorrect (or possibly shows a representation of
a meta-‘undefined’). In TruCalc the results are ‘instantly’ correct, with no user action required.

Declarative programming was popularised through Prolog. Essentially, the programmer
writes true statements, ‘declaring’ them, and Prolog backtracks to solve the equations (sets
of Horn clauses in Prolog). Prolog is thus a declarative language — though its user interface
isn’t.

Likewise, TruCalc is declarative. The user writes equations (or partial equations, taking
advantage of the automatic syntax correction), and these are declarations that TruCalc solves
(by numerical relaxation).

In Prolog, the user has to enter a query, typically terminated by a special character. Until
that character is pressed, the output (if any) is incorrect. This inconsistency within the interface
is what we are used to, even to the extent of accepting the sort of inconsistencies illustrated in
Figure 1. But it requires the user to remember the past; they haven’t pressed return or some
other special character or menu selection yet. If they forget confusion happens.

TruCalc extends declarativeness to instant declarativeness, that is, an interface that is always
true all of the time. No matter what the user writes the answer shown is always correct.

An instantly declarative interface implies that the calculator has to be showing something
that is correct even if the user has not finished entering everything, or has a currently incorrect
edit. Thus the calculator also has to cope intelligently with partial expressions like ÷3+2. In our
case the calculator fills in place holders that alter the expression as little as possible. There are
also problems like 1/0 or overflow like 101010...

— these too can be handled by correction (such
as showing 1/0 as 1/(0 + 1); see [8]), or by changing the algebra implemented by TruCalc.

This instant declarative-ness removes the disparity between the input and the output re-
moving an enormous potential for user confusion and it also removes the need for the user
remembering having to press the “equals” button to get an answer.

4.5 Equal opportunity

The power of TruCalc’s implementation of instant declarativeness combines powerfully with
equal opportunity. Unlike xThink, TruCalc does not distinguish in principle between the user’s
input and its own output. Each has ‘equal opportunity’ in the equation. This makes it possible
to write on both sides of an equality.
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The ability to change either the answer or the question lets a user solve problems simply that
they would have struggled with otherwise. For example, “what power of 2 is 100” can be solved
directly without logarithms.

Equal opportunity is not in itself a feature that is required for a highly mathematical user
interface, but it is a natural generalisation (from expressions to equations) that significantly
increases the power of the user interface for the user.

4.6 Rearranging

In xThink ’s calculator it is possible to delete things or move them around but it is always
an awkward process involving several mode changes and it is fairly limited in what it achieves.
Moreover, any editing in xThink breaks the relation between written input and calculated output,
and the user has to remember to re-evaluated an edited formula. Hence, in xThink the ability
rearrange introduces modes and hidden state.

In TruCalc the ability to drag and drop an arbitrary part of the equation elsewhere is syn-
chronised by TruCalc’s ability to morph the result into a new typeset equation. It is therefore
possible to move parts of the equation around without regard for their size or shape, and the
user always sees a fully correct equation.

5 A demonstration of TruCalc

Because xThink is not highly interactive, ironically, its screen shots (such as Figure 2) make
it easier to understand than screen shots of TruCalc! xThink ’s screen shots show handwriting
input, the recognised input (shown in the bottom pane), and the result. Figure 2 shows several
such examples. It looks straight forward — except, as we showed in Section 4.1, constructing the
interesting display of Figure 2 requires transitions between many modes, and hence possible user
errors. Figure 3 shows TruCalc solving the problem that xThink is shown solving in Figure 2;
however, xThink solves the equation in one step and requires changing modes, whereas TruCalc
solves continually, in place, and needs no modes at all. (In this short paper we do not illustrate
how TruCalc can solve equations more powerfully than xThink — by combining rearranging with
equal opportunity.)

6 Other features of TruCalc

TruCalc provides other features that make it more powerful and easier to use. These features sup-
port, but are semantically unrelated to the highly interactive way it does mathematics. Further
discussion of TruCalc, beyond the scope of the present paper, can be found in [9] and [10].

7 Conclusions

Current leading mathematical systems are capable of a remarkable range of mathematics. With
Mathematica, a market leading example of an interactive computer algebra system, we are able
to solve problems we could not do without it. It is easy to confuse these mathematical capabilities
with usability. So much power seems harnessed, that the power seems usable.

This ‘power leverage’ blinds us to the fundamental non-mathematical nature of these user
interfaces. Often clear mathematical principles like referential transparency and declarativeness
are lost in modes, history dependence, context sensitivity, and so on. The failure of these
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TruCalc has just recognised a handwritten 1, and shown the (at this
moment) correct equation 1 = 1; the user is now writing 2 by hand.

TruCalc has recognised the 2; the user is writing 3 as an exponent.

TruCalc has recognised the 3, and updated the RHS of the equation.

The user is writing a
√

around the 123. Of course, the user could
equally have started by writing the

√
, and then writing inside it.

The
√

is recognised, the RHS is updated, and the user has started to
write 3.

Figure 3: A step-by-step, broken-down example of using TruCalc on the sum that xThink is shown
solving in Figure 2, showing how a single equation changes as the user writes on it. Notice that
TruCalc provides continual correct feedback; there are no modes, no special commands — TruCalc
just ‘goes ahead’ and provides in-place answers. The user feels as if they are writing in a formal
typeface (here, Times Roman). This brief example does not show how TruCalc would handle solving
equations, for instance if the user dragged the 12 onto the RHS. Had the user written an = themselves
on the left of their formula, then the answers would have been shown on the LHS.

principles in conventional mathematical user interfaces undermines our ability to reason reliably
or mathematically.

xThink makes use of the affordance of pen and paper to create an interface that solves partially
some of the interface issues. But it still ignores basic mathematical principles when applied to
interaction. It gains the affordance of paper, at the expense of introducing evaluation modes
(and uncertainty in the handwriting recognition).

We have shown in TruCalc that it is possible to create an interface that supports Frege’s
basic principles throughout the user interface; it has no hidden state, is modeless, instantly
declarative, and so on. These mathematical principles do not compromise the power of TruCalc;
it is in principle as powerful mathematically as xThink and other conventional systems (though
obviously the two systems vary in detail, such as their built in functions they support)). Further,
we have shown that by supporting these principles that the calculator is easier, more enjoyable,
fun and usable — a paradigm shift in usability.
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