
A Document-Oriented Coq Plugin for TEXmacs

Herman Geuvers Lionel Elie Mamane

10th August 2006

Abstract

This article discusses the integration of the authoring of a mathematical docu-
ment with the formalisation of the mathematics contained in that document. To
achieve this we have started the development of a Coq plugin for the TEXmacs
scientific editor, called tmEgg. TEXmacs allows the wysiwyg editing of mathemat-
ical documents, much in the style of LATEX. Our plugin allows to integrate into a
TEXmacs document mathematics formalised in the Coq proof assistant: formal defi-
nitions, lemmas and proofs. The plugin is still under development. Its main current
hallmark is a document-consistent interaction model, instead of the calculator-like
approach usual for TEXmacs plugins. This means that the Coq code in the TEXmacs
document is interpreted as one (consistent) Coq file: executing a Coq command in
the document means to execute it in the context (state) of all the Coq commands
before it.

1 Introduction

TEXmacs ([vdH04]) is a tool for editing mathematical documents in a wysiwyg style.
The input an author types is close to LATEX, but the output is rendered directly on
screen in a pretty-printed way. TEXmacs supports structured editing and it stores
the files in a structured way using tags, which is close to XML. So, a TEXmacs
document is a labelled tree. The labels (tags) provide information that can be used
as content or display information. For a specific label, the user can choose a specific
way of rendering the subtrees under a node with that label, for example rendering
all subtrees in math mode. But a user may also choose a specific action for the
subtrees, for example sending the subtrees as commands to the computer algebra
package Maple. Of course, many labels are predefined, like in LATEX, so a user is
not starting from scratch.

TEXmacs facilitates interaction with other applications in an easy way: within
TEXmacs one can open a“session”, for example a Maple session, and then input text
within that session is sent to a Maple process that is running in the background.
The Maple output is input to the TEXmacs document in a structured way, and
rendered accordingly. In this way, TEXmacs can be used as an interface for Maple,
with the additional possibility to add text or mathematical formulas around the
Maple session, creating a partially interactive mathematical document. Here the
interaction lies in the possibility to execute parts of the document in the background
application.

1



In this paper we present tmEgg, a Coq plugin for TEXmacs. The plugin allows
the user to call Coq from within a TEXmacs document, yielding a TEXmacs doc-
ument interleaved with Coq sessions. It also provides special commands for Coq,
like stating a definition or a lemma. The plugin does not provide its own proof lan-
guage, but leverages any proof language that Coq understands or will understand
in the future, such as [Cor06]. This means that when doing a proof, the user types
actual Coq commands (usually tactics) in the TEXmacs document, which are then
sent to Coq as-is and the Coq output is rendered by TEXmacs. This is in contrast
with the approach of e.g. [Thé03], [DF05] or [ALW06], that seek to change the way
a proof is written or the way a user interface interacts with the prover (relegated
to a “backend” role) in a much more fundamental way.

A crucial aspect of the plugin is that it views the sequence of Coq sessions
within a document as one Coq file. So, when one opens a document and executes
a command within a Coq session, first all previous Coq commands (possibly in
previous Coq sessions) are executed and the present command is then executed in
the Coq state thus obtained. So the TEXmacs document as a whole also constitutes
a valid Coq development. Additionally, one can backtrack to a command within a
previous session, jumping to the Coq state at that point of the development.

From the Coq perspective, one can thus see the TEXmacs document as a doc-
umentation of the underlying Coq file. Using TEXmacs, one adds pretty printed
versions of the definitions and lemmas. The plugin further supports this by a fold-
ing (hiding) mechanism: a lemma statement has a folded version, showing only the
pretty printed (standard mathematical) statement of the lemma, and an unfolded
version, showing also the Coq statement of the lemma. A further unfolding also
shows the Coq proof of the lemma.

Altogether there are four ways of seeing the tmEgg TEXmacs plugin. These are
not disjoint or orthogonal, but it is good to distinguish them and to consider the
various requirements that they impose upon our plugin.

A Coq interface. One can call Coq from within TEXmacs, thus providing an in-
terface to Coq. When the user presses the return key in a Coq interaction
field, the Coq commands in this field are sent to Coq and Coq returns the
result to TEXmacs. The plugin doesn’t do any pretty printing of Coq output
(yet), but it allows to save a Coq development as a TEXmacs file which can
be replayed. Purely as an interface the plugin does about the same as Proof
General ([Asp00]) or CoqIde ([Teab]).

A documented Coq formalisation. A Coq formalisation usually has explana-
tory comments to give intuitions of the definitions, lemmas and proofs or to
give a mathematical (e.g. in LATEX) explanation of the formal Coq code. The
plugin can be used for doing just that: the traditional TEXmacs elements are
used for commenting the underlying Coq file. In this respect, tmEgg can play
the same role as Coqdoc ([Teab]), but also more. Coqdoc extracts document
snippets (in HTML or LATEX format) from specially formatted comments in
Coq scripts (.v files), and creates a HTML or LATEX document containing
these snippets and the vernacular statements (or only gallina, that is the
statements without proofs) verbatim, along with some basic pretty-printing
of terms. Where the use of Coqdoc restricts the user to choosing between
having the explanatory comments rendered (as a HTML or LATEX document)
and interacting with Coq (in the “source” .v file), tmEgg enables the user

2



to have both at the same time, while keeping the property that the docu-
ment can be read without Coq, and exported to a format that can be read
without TEXmacs (but without Coq interaction), such as HTML, PostScript,
PDF, . . . Taking this use case to its extreme, one arrives at a notion of literate
proving, by analogy to literate programming.

A mathematical document with a Coq formalisation underneath. One
can write a mathematical article in TEXmacs, like one does in LATEX. Thus,
one can take a mathematical article and extend it with formal statements and
proofs. Due to the folding mechanism, the “view” of the article where every-
thing is folded can be the original article one started with. It should be noted
that, if one adds a Coq formalisation underneath this, not everything needs
to be formalised: lemmas can be left unproven etc., as long as the Coq file
is consistent, i.e. no notions are used unless they are defined. In this sense,
tmEgg makes a step in the direction of the Formal Proof Sketches idea of
[Wie04].

Mathematical course notes with formal definitions and proofs. We can
use the TEXmacs document for course notes (handouts made by the teacher for
students). An added value of our plugin is that we have formal definitions and
proofs underneath, but we don’t expect that to be a very appealing feature for
students. On the other hand, we also have full access to Coq, so we can have
exercises that are to be done with Coq, like “prove this statement” or “define
this concept such that such and such property holds”. This is comparable in
its intent to ActiveMath ([MAB+01]).

In the following we present our plugin tmEgg, including some technical details
and a fragment of a TEXmacs document with underlying Coq formalisation. We
will discuss the four views on the plugin as mentioned above in detail. An essential
difference between the tmEgg Coq plugin that we have created and other TEXmacs
plugins, e.g. the one for Maple, is that we take a document oriented approach. This
we will describe first.

2 The document-consistent model

The TEXmacs plugins to computer algebra or proof systems usually obey a temporal
model of interaction, that is that the expressions given to the plugin are evaluated
in chronological order, irrespective of their relative position in the document. In
other words, the TEXmacs plugin system ignores the fact that the interpreter it is
interfacing with has an internal state which is modified by the commands TEXmacs
gives it and influences the results of these commands. This can lead to the docu-
ment showing results that are not consistent with the natural reading order of the
document, if the expressions are not evaluated in the order in which they appear,
something which crops up naturally when writing a document: One sometimes
goes back to improve on a previous statement or definition. Furthermore, the re-
sults shown by the document may be irreproducible, as the sequence of statements
leading up to the state in which the expressions were evaluated can be lost. See
figure 1 for an example: The left part shows an example of inconsistent output
with the CAS Axiom. The third (in reading order) command was executed before
the second but after the first, leading to the evaluation of a resulting in 6, while

3



reading the document from top to bottom would suggest it should be 5 at this
point. The situation would be even worse if a:=6 were to be deleted; the reason for
a evaluating to 6 is completely lost. Contrast with the right part, showing a tmEgg
Coq session. Empty_set is predefined in Coq’s standard library, and gets redefined
in the second command. However, whatever the order in which the user asks for
evaluation of the commands, the result shown will always be the one in the figure.
E.g. if the user asks for evaluation of the second command (defining Empty_set
to be 5) and then asks for the evaluation of the first one, the first command will
always answer “Empty_set is an inductively defined type of sort Set without any
constructor”, not “Empty_set is 5”.

Figure 1: Example of inconsistent and consistent output

This risk of inconsistency is naturally highly undesirable in the context of writ-
ing formal mathematics, leading to a document-consistent model of interaction: a
statement is always evaluated in the context defined by evaluating all statements
before it in the document, in document order, starting from a blank state.

2.1 Implementation

Coq 8.1 thankfully provides basic framework support for this, in the form of a
backtrack command that can restore the state to a past point B. It works under
the condition that no structure (section, definition, lemma, . . . ) whose definition
is currently finished was open (incomplete) at point B. If this condition is not
satisfied, tmEgg backtracks up to a point before B where this condition does hold
and then replays the statements between that point and B.

The arguments given to the backtrack command are derived from state infor-
mation that Coq gives after completion of each command, in the prompt. tmEgg
stores the information on the Coq state before a command as a state marker next
to the command itself, that is a document subtree whose rendering is the empty
string. This state information consists (roughly speaking) of the number of defi-
nitions made in the current session, the list of open definitions and the number of
steps made in the current open definition, if any.

tmEgg also keeps track of the position in the document of the last command
executed by Coq. This is used at Coq command execution time to determine

4



whether a backtrack or a forward jump is necessary before the command can be
evaluated.

3 Presentation of tmEgg

tmEgg extends TEXmacs with Coq interaction fields. One can naturally freely
interleave Coq interaction fields with usual document constructs, permitting one
to interleave the formal mathematics in Coq and their presentation in LATEX level
mathematics. Each Coq interaction can be folded away at the press of a button, as
well as each specific result of a command individually. The output of the previous
command is automatically folded upon evaluation of a command. See figure 2 for
an example: The empty circles indicate a folded part and can be clicked to unfold
that part, and the full circles indicate a foldable unfolded part and can be clicked
to fold it. Here, the formal counterpart to hypothesis 2 is completely folded, while
the statement of lemma 3 is unfolded and its proof folded. The proof of lemma 4
is unfolded, but the result of most of its steps is folded.

Figure 2: tmEgg screenshot

Note that the result of each Coq command is inserted into the document stat-

5



ically (and replaced upon reevaluation); this means that they can be copied and
pasted like any part of the document, but also that the saved file contains them, so
that the development can be followed without running Coq, a potentially lengthy
operation. As a corollary, the development can even be followed (but not indepen-
dently checked) on a computer lacking Coq.

In order to help the user create the proposed “formal and informal version of the
same mathematics” structure (particularly in the “mathematical document with a
Coq formalisation underneath” scenario), we present him with a menu where he
can choose a Coq statement type (such as Lemma, Hypothesis, Definition, . . . )
and that will create an empty template to fill made of:

� the corresponding TEXmacs theorem-like environment for the informal state-
ment;

� a foldable Coq interaction field for the formal statement;

� a foldable Coq interaction field for the body of the informal statement, if
appropriate;

This is illustrated in figure 3.

Figure 3: New statement menu, empty lemma structure

3.1 Architecture

We have decided to try to minimise the changes to Coq itself for this project, and
in particular to try not to put TEXmacs protocol or syntax specific code in Coq.
That’s why, rather than adapt Coq to speak the TEXmacs plugin protocol by itself,
we have implemented a wrapper in OCaml that translates from Coq to TEXmacs
(see figure 4). We try to keep that wrapper as simple and stateless as possible,
putting most of the intelligence of the plugin in Scheme in TEXmacs.

6



wrapper CoqTEXmacs

Figure 4: tmEgg architecture

4 How well does the plugin do?

In the introduction, we have described four views (possible applications) on the
tmEgg plugin. We now want to discuss to which extent the plugin satisfies the
requirements for each of those views.

A Coq interface. One can do Coq from within a TEXmacs document using our
plugin, but, compared to well-known interfaces like Proof General ([Asp00])
and CoqIde ([Teab]), the plugin is in particular worse in terms of the display
of the proof state: the proof state is displayed inside the document, which
can clutter things up. From a purely user-interface-for-theorem-provers per-
spective, a reserved fixed-size area for displaying the proof state is sometimes
better, in particular to contain the proof state when it grows unwieldy large.
Other things that our plugin does not support but are possible to add in
TEXmacs are: menus for special tactics and pretty printing (but Proof Gen-
eral and CoqIde don’t have this either). Pretty printing is of course interesting
to add in the context of TEXmacs, because it has various LATEX-like facilities
to add it. However, it should be noted that, if we want to use our plugin as an
interface for Coq, the syntax should be accepted as input syntax, too, so as to
not confuse the user. The user may also (occasionally or structurally) prefer
to use the default Coq pure text syntax rather than mathematical graphical
notations; this will always be supported.

A documented Coq formalisation. As a documentation tool, the plugin works
fine. One can easily add high level mathematical explanations. It would be
convenient to be able to load a whole (annotated, e.g. in Coqdoc syntax) Coq
file into TEXmacs and then continue further annotating it; we intend to write
such an import tool in the future. Note however that there is no (formal) link
between the formal Coq and the high level explanation in TEXmacs, because
the high level translation is not a translation of the Coq code, but added by a
human. This is different from, e.g. the work in the Mowgli ([AW02]) project,
where we have a high level rendering of the formal Coq statements.

A mathematical document with a Coq formalisation underneath. This is
a way the plugin can be used now. One would probably want to hide even
more details, so more folding would be desirable, e.g. folding a whole series of
lemmas into one “main lemma” which is the conclusion of that series. Thus
one would be able to create a more high level of abstraction that is usual in
mathematical documents. Of course this can already be done in TEXmacs,
but our plugin does not specifically propose it automatically. If such nested
folding would be added, it would also be advisable to be able to display the
“folding structure” separately, to give the high level structure of the document.

Mathematical course notes with formal definitions and proofs. In general,
proof assistants are tools that require quite some maturity to be used, so there-
fore we don’t expect students to easily make an exercise in their TEXmacs

7



course notes using the underlying proof assistant Coq, i.e. as an exercise in
the mathematics studied rather than as an exercise in Coq. This situation
may improve in the future though, depending on the maturity of proof as-
sistant technology. It should also be noted that the plugin does not (yet)
explain/render the Coq formalised proofs, like e.g. the Helm tool ([APC+03])
does (by translating a formal proof into a mathematically readable proof).
See also [AGL+06].

5 Future Outlooks

5.1 Mathematical input/output

Current TEXmacs interfaces to computer algebra systems include conversion to and
from mathematical notations (see figure 5). Doing the same with Coq brings some

Figure 5: Mathematical notation input/output with Axiom

difficulties in a more acute way than with a CAS:

� Different developments will call for the same notation to map to different Coq
objects; there are for example several different real numbers implementations
for Coq.

� Similarly, the best notation to use for the same Coq construct will vary de-
pending on the document, where in the document one is, or even more subtle
factors. A prime example of this is parentheses around associative operators:
One usually doesn’t want a full parenthesising in statements, but if one al-
ways leaves out “unnecessary” parentheses, the statement of the associativity
lemma itself looks quite pointless, as do the proof steps consisting of applying
the associativity lemma.

� Some Coq constructs (such as some ways to define division) need information
that is not part of usual mathematical notation (such as proof that the divisor
is not zero).

The notations will thus probably have to be highly dynamic; if making good choices
automatically proves impossible, maybe a good compromise will be to let the author
of the document choose on a case-by-case basis.

8



Once at least the conversion to mathematical notation is satisfying, we can
make a TEXmacs command that takes a Coq term (or the name of one) and whose
rendering is the “nice” mathematical rendering for that term. This means that
users will be able to put Coq terms in their documents and have them look like
LATEX-level mathematics.

This conversion from and to “normal” mathematical notation might also form
a usable mechanism for informal and unsafe exchange of terms between different
computer algebra systems and proof assistants. E.g. if the Coq goal to prove
is x18 − 5x7 + 5 = 0 → x > 2, the user could select in the goal the expression
x18 − 5x7 + 5 = 0 (duly converted from Coq term to mathematical notation by
tmEgg), paste it into a CAS session and ask the CAS to solve that equation (where
the TEXmacs-CAS integration plugin will duly convert it to the syntax of the CAS
being used) to quickly check whether the goal is provable, or use the CAS as an
oracle to find the roots and use knowledge of the roots to make the proof easier to
write.

5.2 Communication with Coq

The wrapper currently interacts with Coq through the coqtop -emacs protocol,
that is the human-oriented coqtop protocol1, very slightly extended to be more
convenient for programs. However, this protocol presents a few suboptimalities for
our purposes:

� There is no documented, robust, way to determine whether a command you
gave failed, gave a warning or succeeded. (Naturally, the existing interfaces
have organically grown rules about parsing Coq’s answer that will give usually
succeed in this task.)

� Terms are pretty-printed back to the original input syntax, which is non triv-
ial to parse and interpret; it has some overloading and in particular relies
on typing information. In order to implement the “mathematical notation
input/output” with TEXmacs, we would like to get the terms at a more low
level, as trees.

We thus plan to implement a good generic interface protocol for Coq, that will
hopefully be able to serve the needs of several interfaces at once. We intend to revive
and extend the protocol used by Centaur and PCoq ([Teaa]). Its main advantage
is that it presents terms as trees, in an easily parsed reverse polish notation with
explicit arity. Other interfaces (as well as tmEgg) will (sometimes or always) want
to get the usual text pretty-printed format, so this terms-as-trees feature will be
made optional. However, this protocol in its current state does not integrate the
rather new backtracking feature; we will extend it so that it does.

5.3 Miscellaneous

Once the basic framework of tmEgg has matured and works well, all kinds of small,
but highly useful, features can be imagined:

� Import of Coq files containing Coqdoc document snippets, leveraging the
LATEX import of TEXmacs.

1A tutorial to Coq is available at http://coq.inria.fr/doc/tutorial.html.

9

http://coq.inria.fr/doc/tutorial.html�


� Automatic generation of table of Coq constructs in the document and corre-
sponding index.

� Similarly, menu command to jump to the definition of a particular Coq object.

� Make any place where a Coq object (e.g. a lemma) is used a hyperlink to its
definition. This could even eventually be expanded up to making tmEgg a
Coq library browser.

References

[AGL+06] Andrea Asperti, Herman Geuvers, Iris Loeb, Lionel Elie Mamane, and
Claudio Sacerdoti Coen. An interactive algebra course with formalised
proofs and definitions. In Michael Kohlhase, editor, Mathematical
Knowledge Management: 4th International Conference, MKM 2005,
Bremen, Germany, volume 3863 of Lecture Notes in Computer Science,
pages 315–329. Springer Verlag, January 2006.

[ALW06] David Aspinall, Christoph Lüth, and Burkhart Wolff. Assisted proof
document authoring. In Michael Kohlhase, editor, MKM 2005, Mathe-
matical Knowledge Management: 4th International Conference, volume
3863 of Lecture Notes in Computer Science, pages 65–80. Springer Ver-
lag, january 2006.

[APC+03] A. Asperti, L. Padovani, C. Sacerdoti Coen, F. Guidi, and I. Schena.
Mathematical knowledge management in HELM. Annals of Mathemat-
ics and Artificial Intelligence, Special Issue on Mathematical Knowledge
Management, 38(1-3):27–46, May 2003.

[AR04] Philippe Audebaud and Laurence Rideau. TEXmacs as authoring tool
for formal developments. In David Aspinall and Christoph Lüth, edi-
tors, Proceedings of the User Interfaces for Theorem Provers Workshop,
UITP 2003, volume 103 of Electronic Notes in Theoretical Computer
Science, pages 27–48, Rome, Italy, November 2004. Elsevier.

[Asp00] David Aspinall. Proof general - a generic tool for proof development. In
M. Schwartzbach S. Graf, editor, TACAS 2000, volume 1785 of LNCS,
2000.

[AW02] A. Asperti and B. Wegner. MoWGLI - a new approach for the content
description in digital documents. In Proceedings of the Ninth Interna-
tional Conference on Electronic Resources and the Social Role of Li-
braries in the Future, volume 1, Autonomous Republic of Crimea, 2002.
(Section 4).

[Cor06] Pierre Corbineau. Declarative proof language for coq. http://www.cs.
ru.nl/~corbinea/mmode.html, July 2006.

[DF05] Lucas Dixon and Jacques Fleuriot. A proof-centric approach to math-
ematical assistants. Journal of Applied Logic: Special Issue on Mathe-
matics Assistance Systems, page 35, 2005. To be published.

[MAB+01] E. Melis, E. Andres, J. Büdenbender, A. Frischauf, G. Goduadze, P. Lib-
brecht, M. Pollet, and C. Ullrich. ActiveMath: A generic and adaptive
web-based learning environment. Artifical Intelligence and Education,
12(4), 2001.

10

http://www.cs.ru.nl/~corbinea/mmode.html�
http://www.cs.ru.nl/~corbinea/mmode.html�


[Teaa] INRIA Sophia-Antipolis Lemme Team. PCoq, a graphical user-interface
for Coq. http://www-sop.inria.fr/lemme/pcoq/.

[Teab] The Coq Development Team. The Coq Proof Assistant Reference Man-
ual. LogiCal Project - INRIA Futurs.

[Thé03] Laurent Théry. Formal proof authoring: an experiment. In Cristoph
Lüth and David Aspinall, editors, UITP2003 International Workshop
on User Interfaces for Theorem Provers, informal proceedings, volume
189 of Technical Report, pages 143–159, Institut für Informatik Albert-
Ludwigs-Universität Freiburg, september 2003. Aracne.

[vdH04] Joris van der Hoeven. GNU TEXmacs. SIGSAM Bull., 38(1):24–25,
2004.

[Wie04] Freek Wiedijk. Formal proof sketches. In Stefano Berardi, Mario Coppo,
and Ferruccio Damiani, editors, Types for Proofs and Programs: Third
International Workshop, TYPES 2003, Torino, Italy, volume 3085 of
LNCS, pages 378–393. Springer, 2004.

11

http://www-sop.inria.fr/lemme/pcoq/�

