
The GLOSS system for transformations from

plain text to XML

Richard Kaye, School of Mathematics, University of Birmingham

2006-06-05

Glosing is a full glorious thing certain,
For letter slayeth, as we clerkes sayn.

from The Summonner’s Tale,
By Geoffrey Chaucer

1 Inputing mathematics as XML

Mathematical texts are complicated, and XML representations of mathematics
rightly insist on accuracy and attention-to-detail. This asks a lot of any human
being required to enter mathematical data. But the potential of the web and
XML-based applications for mathematics cannot be realised until professional
mathematicians in particular are persuaded of the advantages and presented
with suitable tools to author their texts that are as straightforward as the ones
they are used to. Most working mathematicians see the main product of their
work as being the ‘mathematical’ content, rather than ‘metamathematical’ de-
tails such as the precise details of the system or systems being worked in, and
naturally think of common mathematical operators in a textual form such as
‘f-of-x’ or f (x) instead of a more conceptually rigorous form such as ‘apply-f-to-
x’ or apply (f, x). They are not naturally sympathetic to systems that require
them to enter ‘unnecessary’ or ‘obvious’ extra details.

Professional mathematicians have, however, shown willingness to work with
text-based systems rather than the WYSIWYG point-and-click offerings in the
commercial and home-base markets. In particular LATEX is used as the main
format for text and mathematical input. LATEX and its text-based input system
provides greater fine-control over mathematical input. Also, LATEX has a number
of important practical advantages including the availability of many extensions
that add new macros or other functionality. LATEX source files can be authored
in most text editors. However, complex LATEX code (for long equations and
displays for example) is still difficult to write, difficult to set out in a readable
form in a text file, and hence can be difficult to maintain. The macro facility
in LATEX is powerful, but makes parsing general LATEX sources problematic, and
LATEX syntax lies uncomfortably under the fingers on a normal keyboard and
is idiosyncratic in many ways, especially in its use of non-standard macro com-

1

binations for standard letters represented by Unicode characters. Nevertheless
LATEX should be the yardstick against which any document-preparation system
for mathematical texts should be compared.

We are left in a Catch-22 situation: the typical mathematician seems unaware of
progress in mathematical XML or sees little advantage in it due to lack of exam-
ples from the mathematical community, whereas the promise of mathematical
XML will not be realised without input from mathematicians.

One of the goals of the work being described here is to explore ideas towards
alternative systems which are as easy (or easier) to use as LATEX for a pro-
fessional mathematician. The new system should have all of the advantages,
such as extendibility, of LATEX, be at least as easy to use, and hopefully have
many other advantages such as applicability of standard tools such as Unicode
tools, XML tools, and a wider range of semantic defaults. I make no apology
that the main test-case ‘professional mathematician’ that I have used here is
myself. If the reader prefers, this document could be read as a list of personal
desiderata for a working system for XML and mathematics. However, a use-
ful and very general system for text-to-XML conversions, called GLOSS, has
emerged from this work and this will be described in its bare-bones form too. It
is suggested that a specific GLOSS-application might be developed that would
be suitable as a LATEX-substitute, providing a general, extensible, system for in-
put of complex XML documents, including mathematical documents. GLOSS
should have other applications too, including use as a general parser for legacy
text documents, so may well be of interest in a wider field.

I should stress that text-based systems are for technically minded users who
require full control over a document. For other users, point-and-click XML edi-
tors will always have a part to play, probably even the major part. These work
well for small quantities of text, especially when the author is not familiar with
the format in question and the editor can direct the author’s choices; but for
trained, specialist authors, or for work which involves producing and processing
a large number of similar documents, they are rarely the most productive so-
lution. Specialists may well have their own preferred text editing environment,
and a specific tailored XML editing environment may not be compatible with
this. In addition, point-and-click XML editors often turn out to be prescriptive
and restrictive, or difficult to use by an author with an unusual or very specific
task in mind.

2 Transforming plain text to XML

From the previous section, we have seen a need for a plain-text format (or set of
formats) for mathematical XML. Because of the wide variety of mathematical
texts, and because of the ever-changing nature of XML applications for mathe-
matics, it would seem sensible to consider text-processors that handle arbitrary
XML as output. Therefore we must investigate text-to-XML converter systems
in general, in particular ones with the following key features.

• The system should provide coding methods for arbitrary XML

2

• Input code should be easy and fast to type by hand.

• Input code should be easy to structure and read.

• The system should be configurable, extensible and scriptable

• The system should be editor-neutral, that is, it should be easy to type in
any text editor.

• The system should provide coding methods for standard OpenMath and
MathML data, in particular datatypes such as arbitrary precision integers
and base64 data

• The system should provide sensible defaults for mathematical and other
constructs, but it should always be possible to over-ride these defaults.

In addition, the following is highly desirable:

• It should be possible to configure the system to process ‘legacy’ text for-
mats

I shall take a short look at some of the off-the-shelf solutions currently available.

The first and perhaps most obvious one is to author text in XML and process it
to the required target with XSLT. Defaults and other features could be provided
by an XSLT stylesheet. Where this scheme falls down is in the ease-of-authoring
and editor-neutrality. Without special editor tools, XML is prone to parse
errors, or validation errors, and in any case the < and > characters in tags names
do not lie easily under the fingers. For a typical mathematical document, coding
time is certainly not reduced (compared to LATEX) and is most likely significantly
increased. However, direct input of XML and conversion with XSLT remains a
possible solution, provided one is willing to give up the prospect of converting
legacy text documents.

The next idea is to use a standard LATEX-to-MathML converter. Clearly no
such converter will ever fully succeed, as LATEX is not fully-Unicode compliant
and LATEX macros are too general to be interpreted by anything other than
the full LATEX macro engine itself. (If the basic TEX engine was re-written
to accept Unicode and to output XML or even HTML+MathML rather than
DVI or PDF, this might be a more interesting prospect.) The LATEX syntax
itself is not particularly elegant and does not easily provide for general XML
names, for example. (TEX and LATEX use a different character set for macro
names, even disallowing the digits 0-9 so native macro names in the form \name
cannot be used.) Also, LATEX’s syntax does not include provision for many
necessary semantic notions for MathML and other target formats, though these
could be added, possibly at some cost to usability. From a personal point
of view, I regard the standard LATEX-to-XML software as an interim measure
for very simple LATEX code only. I have experimented with standard LATEX-
to-MathML converters using my own legacy documents as test input and been
disappointed every time. However, LATEX-to-MathML converters may well work
for documents that use a limited subset of LATEX, in particular new documents
specially ritten for them. I am not sufficiently familiar with such convertors to
know how flexible or extensible they are.

3

These considerations lead one to consider at a minimum a general parser to con-
struct XML from text files by scanning tokens corresponding to XML element-
names, text data, arbitrary precision integers, base64 data, and the like. My first
experiments with this idea included a simple parser based on a fixed Python-like
syntax followed by a post-processing XSLT stage. This worked, but was not eas-
ily configurable nor, it turned out, as easy to enter data as I hoped. The eventual
solution I was lead to was to use a configuration file (rather like a stylesheet)
describing the various separate ‘modes’ for mathematics and text processing
according to the context. This enables the system to be programmable to many
example text formats and allows a target application to be exactly tailored to
a concise and precise source-format which is much shorter and easier to type.

The resulting system is called GLOSS (for ‘Gloss Linguistic Or Semantic Struc-
ture’), a system written to convert plain text files to XML with mark-up added
automatically. The GLOSS processor is a general purpose tool that reads plain
text files and ‘glosses’ them, i.e., extracts structural information and adds in-
ferred meanings or mark-up in the form of XML tags, writing well-formed XML
as output. It is not necessary to use it as anything other than a text-to-raw-XML
converter for post-processing with XSLT, though it has an extensible built-in
style-sheet language similar to XSLT. (GLOSS configuration files or stylesheets
are called ‘modular vocabularies’ because they define a number of ‘modes’.)
Some aspects of the output XML are easier to control in GLOSS: this includes
the Python-like syntax (which can be over-ridden in a number of ways) and con-
trol of the number of arguments of a variable-argument element. On the other
hand GLOSS does not have the full input text or the full XML tree-structure
in memory at any given time, so cannot perform some of the operations easy in
XSLT.

For general use, GLOSS is intended for authors with detailed knowledge of XML
and the target application they are interested in. However, GLOSS is provided
with a number of modular vocabularies for standard applications (including au-
thoring target-formats such as XHTML+MathML) and these more specialised
GLOSS applications should require rather less background knowledge to use.
The GLOSS application for XHTML+MathML is intended to be at least as
user-friendly as easy to use and extend as LATEX and is appropriate for shorter
papers and longer collections of web pages and papers. Actual examples include
this paper, and further examples will be cited below.

3 GLOSS: overview

At its heart, GLOSS consists of a parser that transforms an input text file to
an XML document. The transformation is controlled by a Modular Vocabulary
(MV) document written in XML and analogous to an XSLT style-sheet [XSLT].
At any moment, GLOSS is working in one particular Mode (analogous to a
template), reading tokens from the text via a tokeniser object, and inserting
data in a particular point of the output XML tree.

The original idea for a Modular Vocabulary was a set of look-up tables of valid
names usable in different contexts, the number of arguments each of these names

4

takes, and what each one translate to. This remains one important application
of Modular Vocabularies, and one which can simplify user-input considerably,
but in GLOSS, MVs are much more powerful than this.

Conceptually, Modes and XSLT templates are similar, but one important dif-
ference is that a computational instance of a mode may accept and process an
arbitrary number of tokens until some condition such as the required number of
tokens being read, a recognised ‘end’ token, or even an end-of-stream marker,
indicates it should stop. On the other hand, an instance of a template only
processes the current node. This will be seen in operation in the examples
below.

One of the strengths of GLOSS is that the tokeniser can be configured by the
mode for the token-types required and even the number of tokens required.
So there may be one mode for PCDATA, where the tokens are the individual
Unicode characters, another for more complex mark-up, where the tokens might
be XML element names, and so on. A number of standard token types are
available, including ones for XML element names, attribute names, etc., and
also token types for arbitrary precision integers, hexadecimal numbers, floating
point numbers, strings, individual characters, URIs, and blocks of base-64 data.

In fact, one is not limited to a mode for each kind of token: different modes
may process tokens in different ways, adding default XML structure in a context
where this may be inferred. This can massively reduce the burden of typing
the source. For example, one simple application of GLOSS I have developed
converts source text files to XHTML with embedded presentation MathML
[MathML] and in mathematics mode, automatically wraps characters in the
most appropriate of the standard tags, mo, mi or mn—if they are not already
so-wrapped. It also counts the number of arguments of elements such as mfrac,
msub, munderover, etc., so that much of the tree-structure can be correctly
inferred.

Where it is necessary to present XML tree-structure, the standard GLOSS ap-
plications use a Python-like syntax based on indentation and only over-ruled
by braces where necessary. The tokeniser has a number of features that enable
syntax to be defined using indentation, but it is the MV file itself that defines
whether and precisely how this is done. In other words, indentation is a feature
built into the tokeniser for the application MVs to choose whether or not they
use it.

The use of a Python-like language for XML is not a new idea, admittedly, but
I believe the stylesheet-like MV language for describing parsing is novel. As
well as the obvious commands for creating elements, attribute nodes, text and
CDATA nodes, this MV language has a number of other interesting features,
but a full discussion of these would take us too far off-track here.

Information is passed from one mode to another via parameters, variables that
hold Unicode strings as values, and these enable the MV files to be modularised.
A typical MV file is a minimal ‘driver’ that includes a number of modules, and
by a mechanism of hooks using parameters, a new module hooks into an exist-
ing module, so several different modules may be chosen by the user to select a
particular format. For example, the main HTML module extends the standard
XML module provided, and other modules are provided for providing extra con-

5

venience and functionality for authoring HTML files, such as section-numbering,
recursive subsections and titles, an extended system for hyper-references, a sys-
tem for presenting theorems and proofs, in HTML, the Dublin-Core metadata,
and of course a number of MathML modules. (All of this is mapped by GLOSS
in a uniform and consistent way to to standards-compliant XHTML.) There
is also a GLOSS module for writing further modules making writing further
modules much more straightforward.

GLOSS parses input text and produces an output XML document. This doc-
ument initially exists in computer memory but is usually printed out to a file
in the usual XML format for saving and later use. The document can then be
transformed, using XSLT for example, either from the on-memory copy or on
re-reading from disk file. A number of XML features, such as entity and char-
acter references, document type identifiers, DTDs and even the internal DTD
subset are often important for subsequent applications but cannot be expressed
in the usual XML infoset [XMLinfo]. Moreover for aesthetic considerations the
user may wish to have further control over the final appearance of the XML
document, and these are not normally expressible using the usual DOM tools
[DOM]. GLOSS solves these problems in a flexible and standards-compliant way
by using an internal representation of an XML document with additional mark-
up for the various elements of XML and how it should be printed in the final
version, written in XML itself. This XML representation document type and
its DTD could be useful for other XML applications, such as an XML editor, in
its own right.

In principle, it is also possible to parse a wide variety of other existing or legacy
formats, though with a couple of exceptions the standard ones that are provided
at present are all based on the standard XML module. The exceptions are
modules to extract data from comments in XML files, and to extract data from
comments in GLOSS input files. These are used in the system itself as self-
documentation tools.

GLOSS is detailed at http://gloss.bham.ac.uk, where you can download a
working version and all the documentation. GLOSS is a Java program of around
5000 lines, together with a number of DTDs, MVs, GLOSS source files and
documentation. It should run on any platform. It is being made freely available
under the Gnu Public Licence [GPL].

4 A minimal GLOSS MV for XML

This section presents a simple example of a modular vocabulary for XML. The
standard GLOSS-xml vocabulary is based on the ideas here, but is much more
sophisticated and flexible. Background knowledge of XML is assumed through-
out this section; the examples taken are from presentation-MathML, though
GLOSS modes can be written for any XML vocabulary.

The idea is to use indentation to represent tree-structure and [and] to delimit
text. (The characters [and] were selected as they are much more conveniently
located on most keyboards and are rarely used in text itself.)

6

The idea is that an input text file such as

math

mrow

mi[A]

mo[=]

mfenced @open[(] @close[)]

mtable

mtr

mtd mi[x]

mtd mi[y]

mtr

mtd mi[z]

mtd mi[w]

should result in

<mrow>

<mi>A</mi>

<mo>=</mo>

<mfenced open="(" close=")">

<mtable>

<mtr>

<mtd><mi>x</mi></mtd>

<mtd><mi>y</mi></mtd>

</mtr>

<mtr>

<mtd><mi>z</mi></mtd>

<mtd><mi>w</mi></mtd>

</mtr>

</mtable>

</mfenced>

</mrow>

This (and many other transformations like it) is achieved with the MV

<?xml version="1.0"?>

<!DOCTYPE mv:modularvocab

SYSTEM "http://gloss.bham.ac.uk/dtd/mv/modularvocab.dtd">

<!--

minimalxml.mv: Minimal MV to process XML with elements, text

and attributes, producing a document.

Richard Kaye. May 2006. Licence: GPL. Warranty: none.

-->

<mv:modularvocab xmlns:mv="http://gloss.bham.ac.uk/xmlns/modularvocab">

<mv:mode name="main" accept="elt" children="1">

<mv:match type="elt">

<mv:document>

<mv:element>

<mv:process-tokens mode="elt-content"/>

</mv:element>

</mv:document>

<mv:return />

</mv:match>

7

</mv:mode>

<mv:mode name="elt-content" accept="elt|attr|[">

<mv:match type="elt">

<mv:element>

<mv:process-tokens mode="elt-content"/>

</mv:element>

</mv:match>

<mv:match type="attr">

<mv:attribute>

<mv:process-tokens mode="text"/>

</mv:attribute>

</mv:match>

<mv:include mode="text"/>

</mv:mode>

<mv:mode name="text" accept="[">

<mv:match type="punc">

<mv:text>

<mv:process-tokens mode="text-content"/>

</mv:text>

</mv:match>

</mv:mode>

<mv:mode name="text-content" accept="]|uc" use-indentation="false">

<mv:match type="punc">

<mv:return/>

</mv:match>

<mv:match type="uc">$v</mv:match>

</mv:mode>

</mv:modularvocab>

Hopefully the reader will be able to guess how this code operates. In any case,
there is much more information in the documentation section of the web site.
As explained, modes get and process tokens until the rules about indentation,
number of child-tokens or an explicit return command require them to stop.
The accept attribute lists the token-types a mode accepts, separated by |.
The modes above use the token-types for unicode-characters, elements and at-
tributes, as well as the explicitly given punctuation tokens [and]. The token
read is matched against the mode’s child nodes. It is also possible to match
against the token’s data as well as its type, but this was not required here. The
string $v represents the token’s value. The content of the match is data to be in-
serted into the output or commands controlling GLOSS’s behaviour. The text,
element and attribute commands make output nodes of the obvious kinds,
and they have convenient defaults for the name of the element or attribute to
be inserted.

The real MV for XML provides the use of braces to override indentation when
necessary, with the rule that an XML group cannot cross { or }. It also provides
a feature that allows the user to ‘push’ back into element-mode from text mode,
so that HTML code such as ‘ordinary text, <i>italic</i> text, and
bold text’ have the convenient and easy-to-type form ‘ordinary
text, [i[italic]] text, and [b[bold]] text’.

The real MV for XML also provides support for CDATA, PI, comments and
other XML features, including DTDs. Other standard MVs extend the basic

8

one in other ways; the p-MathML module knows the usual MathML names for
mathematical tokens such as alpha, beth, c, =, and so on and automatically
wraps then with the most appropriate of mi, mo, mn, etc., when they are not
already so-wrapped. Further extension modules can easily be written. For
example if the matrix construction given here was a common one in a document
an extension mode could easily be written to allow it to be input using the
syntax

math

mrow

A =

matrix

x y

z w

or

math mrow A = matrix {

x y

z w

}

for it.

Further GLOSS modules for processing XHTHML files include modules for pre-
senting definitions, theorems, and proofs, sections and subsections with auto-
matic numbering, support for Dublin Core metadata, and others. Each of these
is selected for inclusion in the main driver MV and automatically ‘hooks’ onto
the base module without further input required from the user.

Finally, as an experiment and quick demonstration of the programmability and
configurability of GLOSS, I have written an alternative MV (available in the
‘doc’ directory of the main GLOSS distribution) which uses a TEX-like syntax,
and in which the same example is encoded as

\math{

\mrow{

\mi{A}

\mo{=}

\mfenced[open="(" close=")"]{

\mtable{

\mtr{\mtd{\mi{x}}\mtd{\mi{y}}}

\mtr{\mtd{\mi{y}}\mtd{\mi{z}}}

}

}

}

}

This format does not use the Python-like indentation to present structure but
instead uses braces. (Indentation is used in the above example for aesthetic con-
siderations only.) Obviously shortcuts can be devised to make this input more
palatable to the general user. The format is not TEX (for example \testing123
would be a valid element name in this format), but is sufficiently familiar to
(La)TEX to be of interest. However, my personal preference is for the Python-
like syntax without \ and so many braces as is it easier to type and clearer to
read.

9

5 Further examples

Like other mathematicians, the main focus of my mathematical work is nec-
essarily towards written mathematical texts, though GLOSS is not exclusively
aimed in this direction. I am using GLOSS for almost all of my papers and web
pages (including this one) and will make the sources available via web pages.
Whilst developing GLOSS I have been using it for two major mathematical
projects and have been delighted with the extra flexibility that XML provides
and improved productivity compared to LATEX.

I have been working on a textbook on logic for mathematics students, which is
now almost finished. The main objectives are to produce a paper-based text
with supporting web pages. The final typesetting will be done by latex, and
I used GLOSS to convert plain text sources to an intermediate XML form for
conversion by XSLT to LATEX or XHTML+p-MathML. The web page is at
http://web.mat.bham.ac.uk/R.W.Kaye/logic/ though much of the the ma-
terial I have written is not available there for copyright reasons.

I have also produced a comprehensive set of web pages for an introductory
real analysis course I gave at Birmingham University. The results are available
at http://web.mat.bham.ac.uk/R.W.Kaye/seqser/, and full GLOSS sources
are available there. These pages were transformed by GLOSS to standard p-
MathML+XHTML directly, with no final transformation by XSLT and a very
minimal and optional CSS style-sheet. The GLOSS modes also provide several
extra facilities such as boiler-plate text, as well as the features already mentioned
in the standard GLOSS-html modules. A XSLT style sheet was used to convert
XHTML+p-MathML to standard HTML for browsers not equipped to display
MathML, and content negotiation is used (with some notable problems on the
client side) on the server to provide the right version of the document.

6 References

DOM http://www.w3.org/DOM/, Document Object Model. W3C.

GLOSS http://gloss.bham.ac.uk, Web page for GLOSS.

GPL http://www.gnu.org/copyleft/gpl.html, Gnu Public Licence.

MathML http://www.w3.org/TR/MathML2/, Mathematical Markup Language
(MathML) Version 2.0. W3C, 21 October 2003.

XMLinfo http://www.w3.org/TR/xml-infoset/, XML Information Set. W3C,
4 February 2004.

XSLT http://www.w3.org/Style/XSL/, The Extensible Stylesheet Language.
W3C.

Richard Kaye
School of Mathematics
University of Birmingham
http://web.mat.bham.ac.uk/R.W.Kaye/

10

