
Semantic Markup for TEX/LATEX

Michael Kohlhase
Electrical Engineering & Computer Science

International University Bremen
http://www.faculty.iu-bremen.de/mkohlhase

September 6, 2004

Abstract

We present a collection of TEX macro packages that allow to markup TEX/LATEX doc-
uments semantically without leaving the document format, essentially turning TEX/LATEX
into a document format for mathematical knowledge management (MKM).

We analyze the current practice of semi-semantic markup in LATEX documents and
supply a definition mechanism for semantic macros and a non-standard scoping construct
for them, which is oriented at the semantic depency relation rather than the document
structure.

We evaluate the STEX macro collection on a large case study: the course materials of
a a two-semester course in Computer Science was annotated semantically and converted
to the OMDoc MKM format Bruce Miller’s LaTeXML system.

1 Introduction

One of the great problems of mathematical knowledge management (MKM) systems is to
obtain access to a sufficiently large corpus of mathematical knowledge to allow the manage-
ment/search/navigation techniques developed by the community to display their strength.
Such systems usually expect the mathematical knowledge they operate on in the form of
semantically enhanced documents.

We will use the term MKM format for a formal representation language for mathematics,
that makes the structure of the mathematical knowledge in a document explicit enough that
machines can operate on it. Examples of MKM formats include the various logic-based lan-
guages found in automated reasoning tools (see [RV01] for an overview), program specification
languages (see e.g. [Ber89]), and the various Xml-based, content-oriented markup languages
for mathematics on the web, e.g. OpenMath [BCC+04], Content-MathML [ABC+03], or
our own OMDoc (see Section 2.4).

Currently, a large part of mathematical knowledge is prepared in the form of TEX/LATEX
documents. TEX [Knu84] is a document presentation format that combines complex page-
description primitives with a powerful macro-expansion facility, which is utilized in LATEX
(essentially a set of TEX macro packages, see [Lam94]) to achieve more content-oriented
markup that can be adapted to particular tastes via specialized document styles. It is safe
to say that LATEX largely restricts content markup to the document structure1, and graphics,

1supplying macros e.g. for sections, paragraphs, theorems, definitions, etc.

1

http://www.faculty.iu-bremen.de/mkohlhase

leaving the user with the presentational TEX primitives for mathematical formulae. Therefore,
even though LATEX goes a great step into the direction of an MKM format, it is not, as it
lacks infrastructure for marking up the functional structure of formulae and mathematical
statements, and their dependence on and contribution to the mathematical context.

In this paper, we will investigate how we can use the macro language of TEX to make it into
an MKM format by supplying specialized macro packages, which will enable the author to add
semantic information to the document in a way that does not change the visual appearance2.
We speak of semantic preloading for this process and call our collection of macro packages
STEX (Semantic TEX). Thus, STEX can serve as a conceptual interface between the document
author and MKM systems: Technically, the semantically preloaded LATEX documents are
transformed into the (usually Xml-based) MKM representation formats, but conceptually,
the ability to semantically annotate the source document is sufficient.

Concretely, we will present the STEX macro packages together with a case study, where
we semantically preload the course materials for a two-semester course in Computer Science
at International University Bremen and transform them to the OMDoc MKM format (see
section 2.4) with the LaTeXML system (see section 2.3), so that they can be used in the
ActiveMath system [MAF+01]. For this case study, we have added LaTeXML bindings for
the STEX macros, and a post-processor for the OMDoc language, but the STEX package should
in principle be independent of these two choices, since it only supplies a general interface for
semantic annotation in TEX/LATEX. Furthermore, we have semantically preloaded the LATEX
sources for the course slides (380 slides, 8200 lies of LATEX code with 336kb). Almost all
examples in this paper come from this case study.

2 Foundations and Related Work

Before we go into the details of the STEX package and the conversion interface, let us review
the current situation. We will first try to classify TEX/LATEX macros used in mathematical
documents with respect to their semantic contribution, and describe the semantic preloading
process. Then we will survey TEX/LATEX conversion tools and look at the LaTeXML system
which we have used in our case study in more detail. Finally, we will review enough of the
OMDoc format to make the presentation self-contained.

2.1 Semantic Preloading of TEX/LATEX Documents

Let us now re-consider why the conversion of TEX/LATEX documents to MKM formats is a
non-trivial task. We can distinguish two different — albeit interrelated — problems:

The Notation/Context Problem Mathematicians have idiosyncratic notations that are
introduced, extended, and discarded on the fly. Generally, this means that the parsing
and semantics construction process has to be adapted on the fly as well. In particular,
it depends on the context, what a piece of notation means. To go into only a few
examples: The Greek letter α is used for numbering, as a variable name, as a type, and
as a name for an operation, etc. In the formula

λXα.X =α λYα.Y =̂Iα (1)
2However, semantic annotation will make the author more aware of the functional structure of the document

and thus may in fact entice the author to use presentation in a more consistent way than she would usually
have.

2

the first and third occurrence of the symbol α is as a type of the bound variables X
and Y , whereas the second one is an indicator that the equality operation is that of
α-equality (the name is derived from the process of “alphabetic renaming”); the final
and fourth occurrence of α — as an upper index on the combinator I — selects one
of an infinite collection of identity combinators (identity function on type α, which
incidentally as an operation has type α → α). This example also shows that the notion
of context can be extremely fine-granular in mathematics. Notation can also depend on
other forms of context: We have varied “standard notations” for binomial coefficients:(

n
k

)
, nCk, Cn

k , and Ck
n all mean the same thing: n!

k!(n−k)! ; the third notation is the French
standard, whereas the last one is the Russian one, so the context for determining the
notation must in some cases include the cultural background of the author (whatever
that means in practice).

The admissibility of symbols and notations in mathematical documents follows complex
rules. In principle, a notation or symbol (more precisely a certain glyph that stands
for a mathematical object or concept) must be introduced before it can be used. A
notation can be introduced explicitly by a statement like “We will write ℘(S) for the
set of subsets of S”, or by reference as in “We will use the notation of [BrHa86] in
the following, with the exception. . . ”. The scope of a notation can be local, e.g. in
a definition which begins with “Let S be a set. . . ” or even only in the immediately
preceding formula, if it is followed by “where w is the. . . ”. Finally, notation can be
given by convention: If we open a book on group theory in the Bourbaki series on
Algebra, we expect notation introduced in [Bou74].

The Reconstruction Problem Mathematical communication and notation relies on the
inferential capability of the reader. Often, semantically relevant arguments are left out
(or left ambiguous) to save notational overload relying on the reader to disambiguate
or fill in the details. Of course the size of the gaps to be filled in varies greatly with
the intended readership and the space constraints. It can be so substantial, that only
a few specialists in the field can understand (e.g. enough to translate) a given piece of
mathematical document.

Both of these problems have to be solved for a successful transformation into an MKM for-
mat, in which the meaning has to be made explicit, and all ambiguities have to be resolved.
Of course, this is impossible in the general case except for the solution of the general “artifi-
cial intelligence problem” of achieving human-like intelligence in machines. Since we cannot
rely on this problem to be solved anytime soon, we will burden the author with marking
up the source documents with additional information that helps the transformation process
determine the semantics.

We will make use the TEX macro mechanism for this markup: TEX allows to define
so-called macros, which are expanded in the formatting process, that transforms a TEX
source file doc.tex into a document doc.dvi in the (device-independent) presentation format,
which can be directly rendered for the screen- or printer output. This basic and very simple
mechanism can be put to various uses in documents: macros can be used to compute values
for section numbers or footnotes and make TEX sources more portable, they can be used as
abbreviations to save the author typing effort, and they can be used for semantic annotation,

3

which is what we will explore here. All of these uses are common3 in LATEX documents.

Abbreviative Macros define a new name for a sequence of TEX tokens, in essence, the
macro just stands for the sum of tokens; this is the traditional function of LATEX.

Semantic Macros stand for semantic objects and expand to a presentation (technically a
sequence of TEX tokens of course) of the object. For instance C∞(R) stands for the
set of arbitrarily differentiable (“smooth”) functions on the real numbers. So a TEX
definition

\def\SmoothFunctionsOnReals{{\cal C}^\infty({\mathbb R})}

not only abbreviates the more complicated expression in the definiens, but also encap-
sulates the information that this expression represents a distinct mathematical object.
A variant macro definition for C∞(R) would be

\def\Reals{{\mathbb R}}

\def\SmoothFunctionsOn#1{{\cal C}^\infty(#1)}

\def\SmoothFunctionsOnReals{\SmoothFunctionsOn\Reals}

Here, we characterize the first two definitions as “semantic” and the third one as “ab-
breviative”.

Semantic macros are commonly used to enhance the maintainability and reusability of
source code. If we for instance use three different semantic macros for the glyph α in
example (1), we can readily distinguish them (e.g. in searches, or for replacement) in
the LATEX source. If we use the semantic macro \binomcoeff{n}{k} instead of the
presentation markup \left(n\atop k\right) for a binomial coefficient, then we can
change the notational standard by just changing the definition of the control sequence
\binomcoeff.

Elliptive Macros Finally, there are uses of macros that we will call elliptive, since they
are used to elide (i.e. leave out) “obvious” arguments. Consider the family of macros
in Figure 1: \interpret introduces the notation [[A]]Mϕ for the denotation of a formula
A in a model M under a variable assignment ϕ. The macro \intermp is abbreviative
(it just saves typing). The case of \interm, \interp, and \interoo is interesting. In
the expressions [[A]]M, [[A]]ϕ, and [[A]] we do not abbreviate information, but really elide
it, i.e. the information that is left out (the assignment ϕ for \interm{A}, the model
M for \interp{A}, and both for \interoo{A}) is relevant semantically, we just do not
present it, since it can be inferred by the reader.

\def\interpret#1#2#3{{\left[\kern-0.18em\left[#1\right]\kern-0.18em\right]^{#2}_{#3}}}

\def\intermp#1{\interpret{#1}{{\cal M}}{\phi}}

\def\interm#1{\interpret{#1}{{\cal M}}{}}

\def\interp#1{\interpret{#1}{}{\phi}}

\def\interoo#1{\interpret{#1}{}{}}

Figure 1: Elliptive Macros

3Of course, the actual frequency and distribution of macros among the categories below depends on the
tastes of the individual author and the purpose of the document.

4

Elliptive macros are often used to specialize semantic macros as in our example. How-
ever, in contrast to semantic macros, they are not semantically complete, since they do
not specify the full semantic information behind the mathematical object.

Obviously, to use TEX/LATEX as an MKM format, we need to maximize the use of semantic
macros over the use of direct presentational notations. We call the process of converting
presentation markup into semantic markup in the form of suitable semantic macros semantic
preloading of a document. For an existing TEX/LATEX document, this is a relatively tedious
process, as it involves heavy editing of the document4, but if well-designed collections of
semantic conventions are used during document creation, the notational overhead is easily
outweighed by the inherent manageability and reusability benefits discussed above.

For the use of elliptive macros, the case is not so clear, since the presentation system in
TEX/LATEX is rather inflexible, as it was originally designed for printed documents. In the
case of other MKM formats, where the presentation engine may vary, we can make use of
a complex user interaction during presentation, for instance, the user could request to see
the elided arguments, or change the notation on the fly. So, if we look at TEX/LATEX as an
MKM format, we can see an added value in supplying the elided arguments (via an upgraded
presentation engine based on e.g. dvi specials, PDF, or dynamic XHtML+MathML). In
any case, we assume that semantic pre-loading makes all elliptive notations explicit in elliptive
macros.

2.2 Tools for TEX/LATEX to Xml Conversion

The conversion of TEX/LATEX documents has been supported by various tools, of which none
has been totally satisfactory yet. For an overview and a test suite see [Mat].

The MMiSSLaTeX [DLL+04] to OMDoc converter is based on a set of LATEX styles [Koh01,
Chapter 4] that use TEX’s file output facility to generate OMDoc files directly.

The Connexions project has developed a LATEX package [WHB03] facilitating content
markup in LATEX for the LATEX-to-CnXML conversion, but does not have a transformation
tool that makes use of it.

Romeo Anghelache’s Hermes [Ang] and Eitan Gurari’s TeX4HT systems use special TEX
macros to seed the dvi file generated by TEX with semantic information. The dvi file is then
parsed by a custom parser to recover the text and semantic traces which are then combined
to form the output Xml document. While Hermes attempts to recover as much of the math-
ematical formulae as Content-MathML, it has to revert to Presentation-MathML where it
does not have semantic information. TeX4HT directly aims for Presentation-MathML.

The latter two systems rely on the TEX parser for dealing with the intricacies of the
TEX macro language (e.g. TEX allows to change the tokenization (via “catcodes”)and the
grammar at run-time). In contrast to this, Bruce Miller’s LaTeXML [Mil] system and
the SGLR/Elan4 system [vdBS03] re-implement a parser for a large fragment of the TEX
language. This has the distinct advantage that we can control the parsing process: We want
to expand abbreviative macros and recursively work on the resulting token sequence, while
we want to directly translate semantic macros, since they directly correspond to the content
representations we want to obtain. The LaTeXML and SGLR/Elan4 systems allow us to
do just this.

4although tools like regular expression replacement facilities e.g. in the emacs editor or one-shot conversion
programs e.g. in perl can be a great help on uniformly marked up document corpora.

5

In the conversion experiment that drove the development of the STEX package, we chose
the LaTeXML system, whose LATEX parser seems to have larger coverage. We assume that a
solution based on the SGLR/Elan4 system would work similarly. Eventually, a combination
of both systems might be the way to go: the Elan4 system could be integrated into post-
processing phase of the LaTeXML work-flow. Systems like Hermes or TeX4HT could be
used with STEX, given suitable STEX bindings provided we find a way to distinguish semantic-
from abbreviative macros.

2.3 The LaTeXML LATEX to Xml Converter

The LaTeXML system, consists of a TEX parser, an Xml emitter, and a post-processing
pipeline. To cope with LATEX documents, the system needs to supply LaTeXML bindings
(i.e. special directives for the Xml emitter) for the LATEX packages. So every LATEX pack-
age package.sty comes with a LaTeXML binding file package.ltxml, a Perl file which
contains LaTeXML constructor-, abbreviation-, and environment definitions, e.g.

DefConstructor("\Reals","<XMTok name=’Reals’/>");

DefConstructor("\SmoothFunctionsOn{}","<XMApp><XMTok name=’SmoothFunctionsOn’/>#1</XMApp>");

DefMacro("\SmoothFunctionsOnReals","\SmoothFunctionsOn\Reals");

DefConstructor is used for semantic macros, whereas DefMacro is used for abbreviative
macros. The latter is used, since the latexml program does not read package.sty and needs
to be told, which sequence of tokens to recurse on. The LaTeXML distribution contains
LaTeXML bindings for the most common base LATEX packages.

For the Xml conversion, the latexml program is run, say on a file doc.tex. latexml
loads the LaTeXML bindings for the LATEX packages used in doc.tex and generates an Xml
file doc.tex.xml, which closely mimics the structure of the parse tree of the LATEX source.
The structure of this file is determined by the LaTeXML packages and must correspond
to a format-specific document type definition (DTD), which is usually a relatively simple
extension of Bruce Miller’s LATEX DTD.

In the semantic post-processing phase, the LATEX-near representation in doc.tex.xml is
transformed into the target format by the latexmlpost program. This program applies a
pipeline of intelligent filters to doc.tex.xml. The LaTeXML program supplies various filters,
e.g. for processing HtML tables, including graphics, or converting formulae to Presentation-
MathML. Other filters like transformation to OpenMath and Content-MathML are cur-
rently under development. The filters can also consist of regular Xml-to-Xml transformation
process, e.g. an XslT style sheet. Eventually, post-processing will include semantic dis-
ambiguation information like types, part-of-speech analysis, etc. to alleviate the semantic
markup density for authors.

2.4 OMDoc, an Open Format for Mathematical Documents

OMDoc (see [Koh04]) is an Xml-based document format for representing technical docu-
ments and their underlying knowledge. To achieve content- and context markup for mathe-
matical knowledge, OMDoc uses three levels of modeling

Mathematical Formulae At the lowest level of mathematical formulae, OMDoc uses the
established standards OpenMath [BCC+04] and Content-MathML [ABC+03]. These

6

provide content markup for the structure of mathematical formulae and context markup
in the form of URI references in the symbol representations.

Mathematical Statements OMDoc provides an original markup scheme for making the
structure of mathematical statements explicit. Again, we have content and context
markup aspects. For instance the definition in the second row of Figure 2 contains an
informal description of the definition as a first child and a formal description in the
two recursive equations in the second and third children supported by the type, which
states that this is a recursive definition. The context markup in this example is simple:
it states that this piece of markup pertains to a symbol declaration for the symbol plus
in the current theory (presumably the theory arith1).

Mathematical Theories At this level, OMDoc supplies original markup for clustering sets
of statements into theories, and for specifying relations between theories by morphisms.
By using this scheme, mathematical knowledge can be structured into reusable chunks.
Theories also serve as the primary notion of context in OMDoc, they are the natural
target for the context aspect of formula and statement markup.

Level Example
Formula level: OpenMath/C-MathML

• Objects as logical formulae

• semantics by pointing to theory level

<OMA>
<OMS cd="arith1" name="plus"/>
<OMV name="X"/>
<OMS cd="nat" name="zero"/>

</OMA>

Statement level:

• Definition, Theorem, Proof, Example

• structure explicit in forms and refer-
ences

<definition for="#plus" type="rec.">
<CMP>rec. eq. for plus</CMP>
<FMP>$X+0=0$</FMP>
<FMP>$X+s(Y)=s(X+Y)$</FMP>

</definition>

Theory level: Development Graph

• inheritance via symbol-mapping

• theory-inclusion by proof-obligations

• local (one-step) vs. global links
theory−inclusion

Proof Obligations

Nat−List ListActualization

imports

imports imports

Nat

0, s, Nat, <,
cons, nil cons, nil

Elem, <

0, s, Nat, <
Param

Elem, <

Figure 2: OMDoc in a Nutshell (the three levels of modeling)

All levels are augmented by markup for various auxiliary information that is present in math-
ematical documents, e.g. notation declarations, exercises, experimental data, program code,
etc.

3 The STEX Packages

In this section we will describe the STEX distribution, which is available from the author
upon request. We expect to release future versions of STEX under the Gnu Lesser General

7

Public License (LGPL [FSF99]) at http://www.faculty.iu-bremen.de/mkohlhase/kwarc
when they have stabilized further.

The STEX distribution is consists of several groups of files which share a common root,
which we will collectively call an STEX package. An STEX package has (at least) four parts:

LATEX Macro Package (extension .sty) that supplies the LATEX macro definitions so that
the LATEX document can be formatted.

LaTeXML Constructor Package (extension .ltxml) that defines the LaTeXML con-
structors and environments enabling the LaTeXML program to produce semantically
enriched Xml.

Document Type Definition (DTD) (extensions .dtd for top-level DTDs, .mod for DTD
modules, and .ent for entities of DTD modules) that specifies the intended Xml output
format

XslT Module for the semantic post-processing phase of LaTeXML

Thus an STEX package doc consists of files doc.sty, doc.ltxml, doc.dtd, doc.mod, doc.ent,
doc.xsl.

3.1 Semantic Markup for Mathematical Statements

The LATEX style file statements.sty is the semantic basis for annotating mathematical state-
ments (the text fragments for definitions, theorems, proofs,. . .) in the LATEX sources with
semantic information so that it can be transformed to Xml and hence to OMDoc via La-
TeXML. Let us look at the example in Figure 3 to get a feeling for the style of markup.

Theorem: //.///.// is not a unary natural number.
Proof: We make use of the induction axiom P5:

• we show that every unary natural number is different from //.///.// by con-
vincing ourselves of the prerequisites of P5.

• we have two cases:

1. base case: ’/’ is not //.///.// (obvious)

2. step case: If a number is different from //.///.//, then its successor is
also different from //.///.//. (by inspection)

• Thus we have considered all the cases and proven the theorem.

Figure 3: A Theorem with a Proof in Presentation-LATEX

We see a presentation of a theorem with a proof, as we would find it on a slide in a
beginners course on natural numbers. Using the annotation infrastructure provided by the
statements package, the structure of the discourse can be marked up using the specialized
environments assertion, proof on the top-level, and the proof structure that is presented

8

http://www.faculty.iu-bremen.de/mkohlhase/kwarc

as nested itemized lists in Figure 3 is classified as proof steps, a case analysis, justifications,
etc in Figure 4.

\begin{assertion}[type=Theorem,id=not-un]{}

$//.///.//$ is not a unary natural number.

\end{assertion}

\begin{proof}[id=not-un-pf,for=not-un]{We make use of the induction axiom P5:}

\begin{step} we show that every unary natural number is different from $//.///.//$

by convincing ourselves of the prerequisites of P5:

\begin{justification}[method=apply-axiom,premises={ax5}]

\begin{pfcases}{we have two cases}

\begin{pfcase}[id=foo]{base case}

\begin{step}[display=flow]’/’ is not $//.///.//$

\begin{justification}[method="trivial"]obvious\end{justification}

\end{step}

\end{pfcase}

\begin{pfcase}[id=bar]{step case}

\begin{step}[display=flow] If a number is different from $//.///.//$, then

its successor is also different from $//.///.//$.

\begin{justification}[method="blast-eq"]by inspection\end{justification}

\end{step}

\end{pfcase}

\end{pfcases}

\end{justification}

\end{step}

\begin{pfcomment}

Thus we have considered all the cases and proven the theorem.

\end{pfcomment}

\end{proof}

Figure 4: A Theorem with a Proof marked up as Statements in

All of these environments take keyword arguments (using David Carlisle’s keyval [Car99]
package). Currently the keys are id, for, prefix, type, display, continues for statements,
and method, premises, and args for justifications to augment the segmentation and classi-
fication of text fragments by the environments with semantic and context information. Of
course, the LATEX macros and environments are defined to re-create the presentation in Fig-
ure 3, so that the changed representation is not visible to the reader. Upon transformation,
latexml transforms this into the OMDoc document in Figure 5.

The advantage for the LATEX user is obvious: she does not have to cope with the Xml
syntax, does not have to learn the particular (unfamiliar) syntax of OMDoc documents, and
does not have to supply information that can be inferred or defaulted. In essence a LATEX
author can use the tools she is accustomed to. Moreover, the LATEX document can be the
original in the document creation work-flow, and can therefore be edited and maintained by
the original author. In fact, the content markup in the source document can also be used for
other purposes, for instance, more aspects than before can be treated by LATEX styles giving
a flexible but uniform look and feel to documents, and structural constraints can be checked
(e.g. have all the premises in a proof been introduced in the document?).

9

<assertion type="theorem" id="not-un"

<CMP><legacy format="TeX">//.///.//</legacy> is not a unary natural number.</CMP>

<assertion>

<proof id="not-un-pf" for="not-un">

<CMP>We make use of the induction axiom P5:</CMP>

<derive id="d1"/>

<CMP>we show that every unary natural number is different from $//.///.//$

by convincing ourselves of the prerequisites of P5</CMP>

<method xref="apply">

<premise xref="ax5"/>

<proof id="foo"><metadata><Title>base case</Title></metadata>

<derive id="c1">

<CMP>’/’ is not $//.///.//$</CMP>

<method xref="trivial"><omtext><CMP>obvious</CMP></omtext></method>

</derive>

</proof>

<proof id="bar"><metadata><Title>step case</Title></metadata>

<derive id="c2">

<CMP>If a number is different from $//.///.//$, then its

successor is also different from $//.///.//$.</CMP>

<method xref="eq-blast"><omtext><CMP>by inspection</CMP></omtext></method>

</derive>

</proof>

</method>

</derive>

<omtext id="te1">

<CMP>Thus we have considered all the cases and proven the theorem.</CMP>

</omtext>

</proof>

Figure 5: The Content of Figure 3 in OMDoc

3.2 Explicit vs. Implicit Statement Markup

As we have seen in Figure 3, some structure of mathematical statements is given explicitly
by graphic or linguistic cues, e.g. the boldface word “Theorem:” or the little box at the
end of the proof and must be reproduced in the package. This kind of statements usually
occupies a full paragraph. Other statements may not even occupy a full sentence, such as
“. . . is of the form R(x, x), which we call a diagonal relation. . . ”. To account for this, we
distinguish two forms of statements: block statements have explicit discourse markers that
delimit their content in the surrounding text, and flow statements that do not have explicit
markers, they are interspersed with the surrounding text. Since they have the same semantic
status, they must both be marked up, but styled differently. This is specified by the keyword
display= in the statement environments, which can have the values block and flow.

Furthermore, mathematical documents often collect coherent statements into groups that
share a common text prefix (a text snippet that sets up an environment for the statements)
this is modeled by the statement-group environment, e.g. the one in Figure 6, which gives
the result in Figure 7.

10

\begin{statement-group}{A function $f\colon X \rightarrow Y$ is called}

\begin{itemize}

\item \begin{definition}[id=injective,display=flow]{\defemph{injective}} iff

$\allcdot{x,y\in X}{f(x) = f(y)\Rightarrow x=y}$.

\end{definition}

\item \begin{definition}[id=surjective,display=flow]{\defemph{surjective}} iff

$\allcdot{y\in Y}{\excdot{x\in X}{f(x)=y}}$.

\end{definition}

\item \begin{definition}[id=bijective,display=flow]{\defemph{bijective}} iff f

is injective and surjective.

\end{definition}

\end{itemize}

\end{statement-group}

Figure 6: A Statement Group of Definitions

A function f : X → Y is called

• injective iff ∀x, y ∈ X.f(x) = f(y) ⇒ x = y.

• surjective iff ∀y ∈ Y.∃x ∈ X.f(x) = y.

• bijective iff f is injective and surjective.

Figure 7: A Statement Group of Definitions

3.3 STEX Modules solve the Notation/Context Problem

In Section 2.1, we have identified two problems, the reconstruction problem, we have evaded by
enlisting the author to preload the document with semantic macros. The Notation/Context
problem, can partially be solved by semantic macros as well, since they can be used to disam-
biguate between different semantic usages of notations. For the context problem we note that
the context of notations coincides with the context of the concepts they denote. Thus the main
idea for solving the context problem is to adapt the mechanism for concept scoping known
from MKM languages to TEX/LATEX. In STEX, we inherit our intuition from the OMDoc
format, which in turn builds on work in computational logic [FGT92, Far00], and algebraic
specification (see e.g. [CoF98, AHMS00]). In these framework, scoping of concepts is governed
by a grouping in collections of mathematical statements called “theories” or “modules”, where
the inheritance of concepts in theories is explicitly expressed in an inheritance relation.

Note that the scoping facilities offered by the TEX/LATEX format do not allow us to model
these scoping rules. The visibility of semantic macros, like any TEX macros, is governed by
the (hierarchical) grouping facility in TEX. In a nutshell, a TEX macro is either globally
defined or defined exactly inside the group given by the group induced curly braces hierarchy.

In STEX, the package statements provides the LATEX environment module for specifying
the theory structure and uses the macros \symdef, \abbrdef elldef for defining macros; the
three definition mechanisms correspond to the three classes of macros discussed in Section 2.1.
Like theories in OMDoc, the module environment governs the visibility of semantic macros
in LATEX. A semantic macro is visible in its “home module” and in all modules that import
macros from it. To get an intuition for the situation, let us consider the example in Figure 8.

Here we have four modules: pairs, sets, setoid, and semigroup where setoid imports
semantic macros from the first two, and the last imports from it. We can see that macro

11

\begin{module}[id=pairs]

\symdef{\pair}[2]{\langle#1,#2\rangle}

...

\end{module}

\begin{module}[id=sets]

\symdef{\member}[2]{#1\in #2} % set membership

\symdef{\mmember}[2]{#1\in #2} % aggregated set membership

...

\end{module}

\begin{module}[id=setoid,uses={pairs,sets}]

\symdef{\sset}{{\cal S}} % the base set

\symdef{\sopa}{\circ} % the operation symbol

\symdef{\sop}[2]{(#1\sopa #2)} % the operation applied

\begin{definition}[id=setoid-def]

A pair $\pair\sset\sopa$ is called a setoid, if \sset is closed under

\sopa, i.e. if $\member{\sop{a}{b}}\sset$ for all $\mmember{a,b}\sset$.

\end{definition}

\end{module}

\begin{module}[id=semigroup,uses={setoid}]

\begin{definition}[id=setoid-def]

A setoid $\pair\sset\sopa$ is called a monoid, if \sopa is associative on

\sset, i.e. if $\sop{a}{\sop{b}{c}}=\sop{\sop{a}{b}}{c}$ for all

$\mmember{a,b,c}\sset$.

\end{definition}

\end{module}

Figure 8: The Module Structure

visibility is governed by the uses relation specified in the keyword arguments to the module
environment. In particular, the macros \pair and \sset are defined in modules setoid and
semigroup (since the uses relation is transitive). With these symbol definitions, we get the
text in Figure 9.

Note that the inheritance hierarchy does allow multiple inheritance. Generally, the uses
relation on modules should be a directed acyclic graph (no inheritance cycles). In a case of a
\symdef conflict, the first (leftmost in the inheritance tree induced by the uses relation) is
taken.

Definition: A pair 〈S, ◦〉 is called a setoid, if S is closed under ◦, i.e. if (a ◦ b) ∈ S
for all a, b ∈ S.
Definition: A setoid 〈S, ◦〉 is called a monoid, if ◦ is associative on S, i.e. if
(a ◦ (b ◦ c)) = ((a ◦ b) ◦ c) for all a, b, c ∈ S.

Figure 9: The Result of Modules in Figure 8

Note that the use of STEX modules moves macro definitions that have traditionally been
moved into separate files in the TEX/LATEX community back into the documents themselves.
This is akin to the organization of functionality in object-oriented programming. The main
reason for this is what is often called the “late binding” in programming. Depending on the

12

viewpoint, late binding can be a problem or feature: in content-oriented document manage-
ment, late binding of style information is used to adapt presentation, in programming, late
binding of program (changing) modules may cause problems with program semantics. We
view late binding for semantic macros as a problem (we do not want to change the semantics),
so we advise to use the modules approach presented here for semantic preloading. In partic-
ular in our experience, modules are the ideal candidates for re-use in semantically marked-up
mathematical documents, as they are semantically and ontologically self-contained and the
remaining dependency on context is made explicit by the inheritance relation.

3.4 LaTeXML Bindings for Semantic and Elliptive Macros

For the transformation into Xml, the latexml program needs to have access to the respective
DefConstructor directives (see Section 2.3) for semantic macros; for abbreviative macros they
are not needed, as latexml just reads the macro definition in the \abbrdef definition.

In our approach, STEX supports modular specification of LaTeXML bindings for semantic
macros using the \latexmldef companion to \symdef. This macro takes two arguments: The
macro invocation pattern and the Xml pattern. For the symbol definition in the second line
of Figure 8, we would add something like

\latexmldef{\pair}[2]{%

<XMApp>

<XMTok cd=’pairs’ name=’pair’/>

<XMArg>#1</XMArg>

<XMArg>#2</XMArg>

</XMApp>}

or more concisely (using special abbreviative syntax):

\latexmlconstructor{\pair}[args=2,cd=pairs,name=pair]

which has the same effect of supplying the LaTeXML program with the necessary DefConstructor
declarations. Of course, with a suitable extension, this approach would also be suitable for
other TEX/LATEX to Xml transformations.

Let us finally come to elliptive macros, these differ from truly semantic macros only in
their LaTeXML binding, which must reflect the elision, as we have argued in Section 2.1.
Let us consider the concrete examples of the elliptive macros in Figure 1.

\symdef{\cM}{{\cal M}}\symdef{\assign}{\phi} % constant, but unspecified model, assignment

\symdef{\interpret}[3]{{\left[\kern-0.18em\left[#1\right]\kern-0.18em\right]^{#2}_{#3}}}

\latexmlconstructor{\interpret}[args=3,cd=booleval,name=interpret]

\abbrdef{\intermp}[1]{\interpret{#1}{\cM}{\phi}}

\elldef{\interm}[2]{\interpret{#1}{\cM}{}}\latexmlelide{\interm}{3}{\interpret}

\elldef{\interp}[2]{\interpret{#1}{}{\assign}}\latexmlelide{\interp}{2}{\interpret}

\def{\interoo}[3]{\interpret{#1}{}{}}\latexmlelide{\interp}{2,3}{\interpret}

Here the \latexmlelide macro takes three arguments, the first is the control sequence for
the elliptive macro, the second is a comma-separated list of arguments to be elided, and the
third is the control sequence of the semantic macro, that this macro is an elliptive variant of.
In our example, the macro \latexmlelide{\interp}{2}{\interpret} is equivalent to the
declaration

\latexmldef{\interm}[2]{%

<XMApp>

<XMTok cd=’booeaneval’ name=’interpret’/>

<XMArg>#1</XMArg>

13

<XMArg elide=’yes’>#2</XMArg>

<XMArg><XMTok cd=’booleaneval’ name=’assign’/></XMArg>

</XMApp>}

Here, the additional attribute elide on the XMArg element in the TEX-near representation
(see Section 2.3) gives the hint to the post-processing that this argument should be elided
in the target format. For instance, in a situation, where the model M is clear from the
context, we would semantically mark up the formula [[A]]ϕ (which actually stands for [[A]]Mϕ)
as \interm{A}{\cM} in the TEX/LATEX source. Note that the macro \interm is mixed el-
liptive and abbreviative; the variable assignment ϕ is abbreviated by the macro, and the
model is elided. Note furthermore, that this approach to elliptive macros assumes that the
target format has a hinting system for the presentation engine. In the case of OMDoc,
we can just make use of the Css system; LaTeXML post-processing would result in the
OMDoc/OpenMath representation

<OMA>

<OMS cd=’booeaneval’ name=’interpret’/>

<OMV name="A"/>

<OMS style="display:none" cd="booeaneval" name="themodel"/>

<OMS cd="booeaneval" name="assign"/>

</OMA>

for the elliptive notation \interm{A}{\cM}. In the simplest form of the OMDoc presentation,
the Css style attribute is copied to the resulting XHtML+MathML output, where it
instructs the user agent not to display the element.

3.5 Miscellaneous Packages

In our case study, we used an extension mikoslides.cls of the LATEX seminar class for
representing slides. This class supplies the top-level structure for slides, it can easily replaced
by any other top-level class in LATEX.

Instead of using Copy and Paste in the source document it is better to share the document
content and let the formatter do the copying. We have also used the author’s structuresharing
package, which provides the macros \STRlabel and \STRcopy, and extended it with \STRsemantics.
The \STRlabel macro takes two arguments: a label and the content and stores the the con-
tent for later use by \STRcopy{label}, which expands to the previously stored content. The
\STRlabel macro has a variant \STRsemantics, where the label argument is optional, and
which takes a third argument, which is ignored in LaTeX. This allows to specify the mean-
ing of the content (whatever that may mean) in cases, where the source document is not
formatted for presentation, but is transformed into some content markup format.

4 Conclusion and Future Work

We have presented a system STEX of macro-packages for semantic annotation of TEX/LATEX
documents and an extension of the LaTeXML system with bindings for the STEX package.
This allows us to semantically pre-load TEX/LATEX documents and transform them into Xml
and ultimately into the OMDoc format.

The system is being tested on a first-year computer science course at International Uni-
versity Bremen. The next case study will be the OMDoc 1.2 report [Koh04].

In essence, the STEX package together with its LaTeXML bindings forms an invasive
editor for OMDoc in the sense discussed in [KK04]: The author can stay in her accustomed

14

work-flow; in the case of TEX/LATEX, she can use the preferred text editor to “program”
documents consisting of text, formulae, and control sequences for macros. The documents
can even be presented in by the TEX formatter in the usual way. Only with the semantic
preloading, they can be interpreted as MKM formats that contain the necessary semantic
information, and can even be transformed into explicit MKM formats like OMDoc.

Thus the STEX/LaTeXML combination extends the available invasive editors for OM-
Doc to three (CPoint [KK04] and nb2omdoc [Sut04] being those for PPT and Mathemat-
ica). This covers the paradigmatic examples of scientific document creation formats (with
the exception of MS Word a possible porting target of the VBA-based application CPoint).

In the future, we plan to extend the system with a CnXML back-end, which produces
the input format for Connexions and e-learning document management system at Rice
University. In particular, we will include the LATEX package [WHB03] developed there.

Acknowledgments

This work has profited significantly from discussions with Bruce Miller and Ioan Sucan. The
former is the author of the LaTeXML system and has extended his system readily to meet
the new demands from our project. The latter is a student a IUB who has faithfully carried
the brunt of the editing load involved with semantic pre-loading the LATEX slides. Finally I
am indebted to David Carlisle who helped me with the non-trivial hacking involved in getting
the modules to work.

References

[ABC+03] Ron Ausbrooks, Stephen Buswell, David Carlisle, Stphane Dalmas, Stan Devitt, Angel
Diaz, Max Froumentin, Roger Hunter, Patrick Ion, Michael Kohlhase, Robert Miner, Nico
Poppelier, Bruce Smith, Neil Soiffer, Robert Sutor, and Stephen Watt. Mathematical
Markup Language (MathML) version 2.0 (second edition). W3c recommendation, World
Wide Web Consortium, 2003. Available at http://www.w3.org/TR/MathML2.

[AHMS00] Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. Towards an evolutionary
formal software-development using CASL. In C. Choppy and D. Bert, editors, Proceed-
ings Workshop on Algebraic Development Techniques, WADT-99, number 1827 in LNCS.
Springer, 2000.

[Ang] Romeo Anghelache. Hermes: A content oriented LaTeX to XML+MathML conver-
sion/authoring tool. Web Manual at http://www.psyx.org/hermes/doc.html.

[BCC+04] Stephen Buswell, Olga Caprotti, David P. Carlisle, Michael C. Dewar, Marc Gaetano, and
Michael Kohlhase. The Open Math standard, version 2.0. Technical report, The Open
Math Society, 2004. http://www.openmath.org/standard/om20.

[Ber89] J. A. Bergstra. Algebraic specification. ACM Press, 1989.

[Bou74] Nicolas Bourbaki. Algebra I. Elements of Mahtematics. Springer Verlag, 1974.

[Car99] David Carlisle. The keyval package. The Comprehensive TEX Archive Network, 1999. Part
of the TEX distribution.

[CoF98] Language Design Task Group CoFI. Casl — the CoFI algebraic specification language —
summary, version 1.0. Technical report, http://www.brics.dk/Projects/CoFI, 1998.

[DLL+04] Christoph Dwertmann, Arne Lindow, Christoph Lüth, Markus Roggenbach, and Jan-
Georg Smaus. How to use and configure MMiSSLATEX, 2004. avaialble at http:
//www.informatik.uni-bremen.de/mmiss/tools_e.htm.

15

http://www.psyx.org/hermes/doc.html
http://www.openmath.org/standard/om20
http://www.informatik.uni-bremen.de/mmiss/tools_e.htm
http://www.informatik.uni-bremen.de/mmiss/tools_e.htm

[Far00] William Farmer. An infrastructure for intertheory reasoning. In David McAllester, editor,
Automated Deduction – CADE-17, number 1831 in LNAI, pages 115–131. Springer Verlag,
2000.

[FGT92] William Farmer, Josuah Guttman, and Xavier Thayer. Little theories. In D. Kapur, editor,
Proceedings of the 11th Conference on Automated Deduction, volume 607 of LNCS, pages
467–581, Saratoga Spings, NY, USA, 1992. Springer Verlag.

[FSF99] Free Software Foundation FSF. GNU lesser general public license. Software License avail-
able at http://www.gnu.org/copyleft/lesser.html, 1999.

[KK04] Andrea Kohlhase and Michael Kohlhase. CPoint: Dissolving the author’s dilemma. In An-
drea Asperti, Grzegorz Bancerek, and Andrej Trybulec, editors, Mathematical Knowledge
Management, MKM’04, number 3119 in LNAI. Springer Verlag, 2004. forthcoming.

[Knu84] Donald E. Knuth. The TEXbook. Addison Wesley, 1984.

[Koh01] Michael Kohlhase. OMDoc: An open markup format for mathematical documents (ver-
sion 1.1), 2001. http://www.mathweb.org/omdoc/omdoc.ps.

[Koh04] Michael Kohlhase. OMDoc an open markup format for mathematical documents (version
1.2), 2004. Manuscript, http://www.mathweb.org/omdoc/omdoc1.2.ps.

[Lam94] Leslie Lamport. LATEX: A Document Preparation System, 2/e. Addison Wesley, 1994.

[MAF+01] E. Melis, J. Buedenbender E. Andres, Adrian Frischauf, G. Goguadze, P. Libbrecht, M. Pol-
let, and C. Ullrich. The activemath learning environment. Artificial Intelligence and
Education, 12(4), winter 2001 2001.

[Mat] Online Repository at http://www.mathml.ca.

[Mil] Bruce Miller. LaTeXML: A LATEX to xml converter. Web Manual at http://dlmf.nist.
gov/LaTeXML/.

[RV01] Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Reasoning, volume
I and II. Elsevier Science and MIT Press, 2001.

[Sut04] Klaus Sutner. Converting mathematica notebooks to OMDoc. to appear in [Koh04],
2004.

[vdBS03] Mark van den Brand and Jürgen Stuber. Extracting mathematical semantics from latex
documents. In Proc. Intl. Workshop on Principles and Practice of Semantic Web Reasoning
(PPSWR 2003), number 2901 in LNCS, pages 160–173, Mumbai, India, 2003. Springer.

[WHB03] Rebecca Willett, Brent Hendricks, and Richard Baraniuk. CnxTeX - a LATEX style file to
facilitate LATEX-to-xml conversion. available at http://dsp.rice.edu/software, 2003.

16

http://www.gnu.org/copyleft/lesser.html
http://www.mathweb.org/omdoc/omdoc.ps
http://www.mathweb.org/omdoc/omdoc1.2.ps
http://www.mathml.ca
http://dlmf.nist.gov/LaTeXML/
http://dlmf.nist.gov/LaTeXML/
http://dsp.rice.edu/software

	Introduction
	Foundations and Related Work
	Semantic Preloading of TeX/LaTeX Documents
	Tools for TeX/LaTeX to Xml Conversion
	The LaTeXML LaTeX to Xml Converter
	OMDoc, an Open Format for Mathematical Documents

	The 0 Packages
	Semantic Markup for Mathematical Statements
	Explicit vs. Implicit Statement Markup
	0 Modules solve the Notation/Context Problem
	LaTeXML Bindings for Semantic and Elliptive Macros
	Miscellaneous Packages

	Conclusion and Future Work

