
A mechanised environment for Frege’s

Begriffsschrift notation

Rob MacInnis1, James McKinna2, Josh Parsons3 and
Roy Dyckhoff4

1rfm3@st-andrews.ac.uk
2james.mckinna@st-andrews.ac.uk

4rd@st-andrews.ac.uk

School of Computer Science,
University of St Andrews
3jp30@st-andrews.ac.uk

Arché AHRB Research Centre for the
Study of Logic, Language, Mathematics and Mind,

University of St Andrews

Abstract. Frege’s Begriffschrift [3] introduced new levels of sophisti-
cation and complexity in logical syntax and its representation; its two-
dimensional nature has proved a stumbling block for those seeking to
understand Frege’s ideas and his system. It is, however, merely a form
of abstract syntax for a higher-order predicate logic, with proofs repre-
sented linearly and formulae two-dimensionally. Our work concerns the
development of a Java and XML-based GUI for the interactive construc-
tion of formulae (and, in due course, of proofs) of this system, with
output in concrete form such as LATEX. It is intended to make Frege’s
notation more easily used and understood, and to illustrate XML tech-
niques on a seriously challenging and unusual problem. End users will be
Frege scholars; we plan to make the system available in due course as a
web-based application either publicly or in association with a publisher.

1 Introduction

Frege’s Begriffsschrift [3] introduced new levels of sophistication and
complexity in logical syntax and its representation, which have proved
a stumbling block to subsequent generations of philosophers, math-
ematicians and logicians seeking to understand Frege’s ideas.

The starting point for our work was the preparation of a new
translation of the Grundgesetze der Arithmetik [4], with the inten-
tion of typesetting Frege’s complex formalism using LATEX, building
on an initial style file produced by the third author [5]. There rapidly



emerged the desirability of (semi-)automated support for the con-
struction of the (LATEX source for the) figures in Frege’s notation,
some 1000–1500 in all, rather than an attempt to typeset them by
hand.

The first author was therefore employed to build a tool to support
the graphical construction of the figures; a natural design choice was
to factor the production of LATEX source via an intermediate layer
of XML. This paper documents some of the work done in producing
a Java GUI for direct manipulation of Frege’s notation, together
with the XML and LATEX back-end processing. Much of the latter
is coming to seem routine, especially since the emergence of the
MathML [9], OpenMath [1] and MKM [8] communities. Our work is
distinguished in the first instance by not committing to the use of
existing tools, but instead focusing on the unusual and challenging
aspects of Frege’s unusual and challenging notation.

2 Frege’s notation

Frege’s notation is merely a form of abstract syntax for a higher-
order predicate logic, with proofs represented linearly and formulae
two-dimensionally (in contrast partial or total to modern practice).

The notation in Frege’s logic [7] contains, inter alia, all the ex-
pressive power of the modern predicate calculus. There are, how-
ever, two critical differences between them. Firstly, Frege’s calcu-
lus is higher-order, allowing quantification over concepts (i.e. predi-
cates or properties) rather than just over individuals, with predicates
moreover represented as propositional functions. Secondly, and with
more severe consequences for producers and consumers of the no-
tation, Frege’s system fails to use an abbreviation mechanisms for
definition of logical connectives (although such a mechanism is used
for other purposes). Table 1, adapted from Zalta [10], illustrates how
the connectives are represented in Frege’s notation—given the basic
tree structure of an implication, and the negation decoration, the
other connectives simply follow their standard definitions in terms
of implication, negation and universal quantification. The lack of
abbreviation, coupled with the two-dimensional layout, renders the
notation essentially unreadable for all but simple formulae.



Modern Notation Frege’s Notation

¬A A

A ⊃ B B
A

A ∧B B
A

A ∨B B
A

A ≡ B A = B

∀x.F (x) a F (a)

∃x.F (x) a F (a)

Table 1. Logical connectives

Though the graphical part of Frege’s notation is conceptually just
abstract syntax, one may observe that the second dimension allows
us to observe structural relationships that are only visible in modern
notation via parenthesisation.

Figure 1 (on the following page) shows how the following formula
in Peano-style notation appears in Begriffsschrift:

[∀a(f(x, a) ⊃ F (a)) ⊃ (f(x, y) ⊃ F (y))] ⊃

[∀b[F (b) ⊃ ∀a(f(b, a) ⊃ F (a))] ⊃ [F (x) ⊃ (f(x, y) ⊃ F (y))]]

3 The Mechanised Environment

The system is a graphical editor for Frege’s two-dimensional tree
notation. Its initial purpose was to enable the creation of LATEX
source to represent the formulae and proofs in the new translation of
Grundgesetze der Arithmetik [4] mentioned above. Subsequently, an
intention to make the tool available to Frege scholars has influenced
the system’s development. It is written entirely in Java and includes
three distinct modules: input interface, XML converter, and XML



F (y)

f(x, y)

F (x)

b a F (a)

f(b, a)

F (b)

F (y)

f(x, y)

a F (a)

f(x, a)

Fig. 1. Theorem 71 from Begriffsschrift (p. 59)

to LATEX converter. As outlined in the following sections, this divi-
sion leaves the system open to future development while fulfilling its
current purpose in a timely manner.

A delicate issue in the eventual typesetting of Begriffsschrift is
that leaf formulae are required to align on their initial symbols—
see section 3.2 below. Output (as in Fig. 4 below) generated using
the third author’s initial set of LATEX macros has the defect that
formulae do not always align correctly. This appears to be an intrinsic
limitation of the one-pass nature of LATEX processing, influencing
both the system architecture and the detailed design choices within
each component.

3.1 User Interface

As an alternative to typesetting the LATEX by hand, the user in-
terface1 provides all of the necessary tools to build and manipulate
formulae and proofs in Frege’s Begriffsschrift notation. The task of
translation, which requires well over a thousand formulae to be con-
structed, has driven the design considerations for the GUI, as have
typical HCI goals and expectations. Shortcut keys are included for
experienced users, tool tips for beginners, and thoughtful colour se-
lection aims to provide equal sensory feedback to colour-blind users.

1 Functionality discussed has all been built but at the time of publication is still
undergoing developmental changes.



Users will interact with the editor through a combination of
mouse and keyboard commands. Though most editing actions can
be performed with the mouse, more experienced users should find
the shortcut keys to be a more fluid approach to construction. For
mouse-based interaction, several visual cues are provided to aid in
the construction process. When a user drags the pointer over an ob-
ject in the tree it becomes highlighted, the insertion point for new
tree objects is identified by a vertical line, and the sub-tree in scope
(that part of the tree that will be affected by any changes) is high-
lighted as well. These features can be seen in the figures below.

Users can perform various actions upon the tree structure. In
order to insert a negation, implication, or quantification, the user
simply selects the corresponding tool, drags the pointer to the desired
location and clicks. The tree is automatically realigned and ready for
another action.

Delete actions can be applied to two types of object: a single tree
and an entire sub-tree. The currently selected tree is highlighted in
a colour different from that of the sub-tree in scope, making it very
clear to the user what will be affected by a delete action. For deletion
of a single tree the user simply selects the tree and presses ‘delete’
(or ‘backspace’); for deletion of a sub-tree the user must either right-
click on a tree and select ’delete sub-tree’ or, alternatively, select the
vertical implication line and press ’delete’ as above2.

Figures 2 and 3 show the insert and delete actions — note the tree
realignment and the propagation of Gothic characters from the in-
serted universal quantifier through to the terminal nodes. (Abstrac-
tion of a formula F (a) w.r.t. a free variable a forces the conversion of
a to a Gothic font.) For example, the final formula in the two cases
is representable in (fully parenthesised) modern notation (and us-
ing sets to represent concepts and membership thereof to represent
’falling under’ a concept) as

(∀x.((x ε u) ⊃ ∀y.((y ε u) ⊃ (x = y)))) ⊃ (Nu = 1)

or even as

2 The latter mechanism is provided as a faster way to prune trees and should not be
done by accident if visual cues are followed. Accidents, of course, do happen, and
an undo mechanism is being developed.



∀x, y ∈ u.(x = y) ⊃ Nu = 1

expressing the idea (in modern terminology) that a set u has cardi-
nality 1 if any two of its elements are equal. (Whether this is true is
another matter.)

Fig. 2. Before and after an insert action.

Fig. 3. Before and after a delete action.

The ability to use multiple editing windows was added after the
initial development. This is particularly useful when making use of
the copy-and-paste functionality, which saves construction time by



allowing similar tree sub-structures to be reused. In order to copy
a user must simply drag over the desired sub-tree, right-click, and
select ‘copy.’ Paste always creates a new implication line and is sim-
ilar to insertion: point, right-click, select ‘paste,’ and the tree will
appear at the insertion point.

3.2 Alignment Algorithm

Correct alignment of the formulae is a primary concern for the GUI
and its generated output, and a key requirement which the system
attempts to fulfil. As alluded to above regarding the one-ass nature
of LATEX processing, there appeared no simple solution to left-align
the leading symbols of the statements of a formula as required in
Frege’s notation.

The original alignment produced mis-aligned trees like Fig. 4,
whereas they should be aligned as in Fig. 1. While the improperly
aligned figure may, in this case, be more informative as regards scope,
it is simply not “official” Begriffsschrift.

This has the further consequence that the notation is partic-
ularly ill-suited to dynamic editing: any changes to the tree affect
(the alignment of) all branches every time. Because of this it was im-
perative to develop an algorithm that efficiently restructured trees
of any size. The final algorithm—O(n) for both time & space com-
plexity3—quickly and accurately aligns the tree after every edit.

Every branch includes a spacer of initial length zero. Starting at
the root (the ‘`’ symbol) and working top to bottom, the algorithm
calculates the distance from the beginning of the branch to the begin-
ning of the statement. This value is passed as the horizontal ‘guess’,
along with the vertical height of its statement, to the next(right-
most) branch4. This branch calculates its own length, compares it
to the ‘guess’, and passes on the greater of the two (note that it
does not resize its spacer at this point). Upon reaching the bottom
of the tree, each branch knows its exact height location but only
the bottom-most branch knows the maximum width. A quick pass
back upwards through the tree informs all branches of their maxi-
mum width; the tricky bit here, however, is that each branch doesn’t

3 n being the number of branches in the formula
4 Note that this is not the abstract next branch in logical terms.



know the horizontal distance between itself and the previous branch.
This is where the ‘guess’ comes in: after each branch resizes it sim-
ply returns the difference between its current length and the ‘guess’
value, effectively telling the previous branch the only information
it needs: how big to make its spacer. The widest branch receives a
‘correction’ of zero.

F (y)

f(x, y)

F (x)

b a F (a)

f(b, a)

F (b)

F (y)

f(x, y)

a F (a)

f(x, a)

Fig. 4. Misaligned theorem 71 from Begriffsschrift (p. 59)

3.3 XML Layer

The intermediate layer of XML is a simple, structured method of
abstractly representing Frege’s formulae and proofs. Saving graphi-
cal objects in this XML format enables simple batch conversion into
LATEX while leaving open the opportunity to create converters for
other formats such as MathML. XML offers genericity, interoper-
ability and a rich powerful toolset.

The underlying XML format is a direct representation of Frege’s
tree structure, together a number of relative spacing measurements—
the spacing data produced by the GUI’s alignment algorithm is sim-
ply exported along with abstract tree structure in order to generate
properly aligned LATEX. This represents the middle ground between
purely abstract representation and a concrete rendering format, im-
proving upon previous solutions to the problem.



3.4 LATEX Generator

The main purpose of the system is to achieve figures in processed
LATEX identical to those constructed in the GUI. The XML to LATEX
converter provides a simple mechanism for converting our Frege
XML format into LATEX source for the suitably modified version5 of
the original Begriffsschrift style file [5]. All of the correctly aligned
sample figures in this paper have been constructed using the system,
thus providing a first proof of concept before work begins in earnest
on the Grundgesetze.

While the macros in the Begriffsschrift style file are quite com-
plex, the actual conversion between the XML and LATEX is relatively
straight-forward. Initially a decision had to be made about whether
to use a DOM or SAX parser, and this raised some deeper issues
about the language itself and how to appropriately implement rules
for data. Several attempts to produce a correct schema were put
on hold for various reasons. Given the evolving nature of the cur-
rent system design, a generic DOM tree implementation has been
employed.

The XML is parsed by the DOM parser and the Document object
is created. This object is passed to the tree-walker which uses a
very simple look-up table to turn each element of the XML into the
corresponding source for that that macro instance. This is very clean
and very efficient, and also very simple. It is easily extensible because
the look-up table is loaded from a text file at run-time, so any new
changes in the XML that are ready to be used by the style file can
be translated without updating the software. The same technique is
used for converting symbols specific to Frege’s notation into their
respective macros.

A particularly unusual feature, one which ties the software di-
rectly to its task of producing LATEX, is the ability for expert users
to type macros directly into terminal nodes rather than using the
mouse or shortcut keys. This functionality was desired by the trans-
lation team, and actually has required no additional code. Because
there is no proof-checking involved in the construction process, users
can put whatever they like at the terminal nodes. Frege-specific sym-
bols are encoded in XML and converted to their specific macros later,

5 begriffnew.sty, available from the authors



but any surrounding text is simply carried into the LATEX source and
compiled like any other document.

4 Conclusions and Further Work

The system has been designed to a still-evolving specification; whether
it is indeed easier than typesetting the proofs by hand has yet to be
seen. There are many directions in which this project has room to
grow and our aims have certainly gone beyond those originally con-
ceived by the translators of the Grundgesetze.

Compatibility with other representations such as SVG (Scalable
Vector Graphics) [2] and MathML [9] is particularly desirable and
is the most likely next step. As suggested by a referee, the work
of Padovani and Solmi [6] may be of interest. For researchers and
students eager to learn by experimentation, the ability to enter for-
mulae and have them built in Frege’s notation automatically may
also be useful. Authors of papers on Frege will hopefully find this
package useful for creation of any necessary formulae, rather than
attempting a reconstruction from scratch.

Certainly there are many other possible applications for both this
system as a whole and also its constituent parts. Where they will fit
into the broader mathematical community and which parts will be
developed further remain to be seen. The initial translation task
has given rise to a complex tree editing problem which this system
addresses, and its architecture leaves open the possibility for future
development in a variety of directions.

5 Acknowledgments

We acknowledge the helpful comments of two referees, the advice
of Roy Cook, Philip Ebert and Marcus Rossberg on the work and
notation of Frege, Peter Sullivan for a preprint of [7] and all of the
University of St Andrews, the EPSRC and the Arché project (and
thus indirectly the Arts and Humanities Research Board) for finan-
cial support.



References

1. The OpenMath Consortium. OpenMath 2.0. http://www.openmath.org/cocoon/
openmath/standard/om20/index.html.

2. The W3C Consortium. Scalable vector graphics (svg). http://www.w3.org/

Graphics/SVG/.
3. Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formel-

sprache des reinen Denkens. Halle: L. Nebert, 1879.
4. Gottlob Frege. Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet. Pohle:

Jena, 1892.
5. Josh Parsons. begriff.sty a LATEX2e package for typesetting Be-

griffsschrift. http://arche-wiki.st-and.ac.uk/~{}ahwiki/bin/view/Main/

BegriffsschriftLaTeX, 2003. Released under the GNU General Public License.
6. Luca Padovani & Riccardo Solmi. An investigation on the dynamics of direct-

manipulation editors for mathematics. In Third International Conference on Math-
ematical Knowledge Mnagement, LNCS 3119. Springer, 2004.

7. Peter Sullivan. Frege’s logic. In Dov M. Gabbay and John Woods, editors, Hand-
book of the History of Logic, pages 659–750. Elsevier BV, 2004.

8. The MKMNET Consortium. http://monet.nag.co.uk/mkm/consortium.html.
9. W3C. MathML Technical Recommendation. http://www.w3.org/TR/MathML2/.

10. Edward N. Zalta. Gottlob Frege. In Edward N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. 2004.

http://www.openmath.org/cocoon/openmath/standard/om20/index.html
http://www.openmath.org/cocoon/openmath/standard/om20/index.html
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://arche-wiki.st-and.ac.uk/~{}ahwiki/bin/view/Main/BegriffsschriftLaTeX
http://arche-wiki.st-and.ac.uk/~{}ahwiki/bin/view/Main/BegriffsschriftLaTeX
http://monet.nag.co.uk/mkm/consortium.html
http://www.w3.org/TR/MathML2/

