
CPoint’s Mathematical User Interface

Andrea Kohlhase

School of Computer Science,
Carnegie Mellon University,

ako@cs.cmu.edu

Abstract. CPoint is a semantic, invasive editor for Microsoft Power-
Point. It enables the user to distinguish between form and content in a
document by providing a user interface to the semantic XML data for-
mat OMDoc. Lately, CPoint introduced a mathematical user interface,
which fully integrates mathematical symbols into PowerPoint presenta-
tions based on the semantics of the underlying objects rather than sim-
ply generating appropriate ink marks. Here, CPoint has to deal with
two contrasting requirements: user-friendly creation and presentation of
symbol objects (as building blocks of mathematical formula) in Power-
Point and their conversion into formal OpenMath expressions in the
to be generated OMDoc document. Pragmatically, CPoint makes use
of two already existent, open-source LaTex converters: TEXPoint and
LaTeXML.

1 Introduction

CPoint is an invasive editor for Content in Microsoft PowerPoint (PPT) [KK04].
Its goal is to provide a PPT author with an interface to explicitly store seman-

Fig. 1. The CPointAuthor User Interface Including CPoint’s MUI



tic information (geared towards the XML data format OMDoc [Koh04b]) in the
PPT slide show itself without destroying the presentational aspects of the PPT

document. CPoint is written in Visual Basic for Applications (VBA) and is
implemented as a PPT add-in, that makes its functionality available through a
tool bar in the PPT menu where it is at an author’s disposal whenever the PPT

editor is running ([Koh04a], first release in 2000). PPT objects like text boxes or
images are categorized as “Theory”, “Symbol”, “Example”, “Motivation”, etc.
and additional semantic information can be supplemented. CPoint is an open-
source application and can be obtained at http://www.cs.cmu.edu/∼ccaps.

In this paper, we want to describe CPoint’s mathematical user interface
(MUI) for math symbols (Figure 1). As the term ’symbol’ is somewhat over-
loaded, we distinguish between symbol objects (PPT objects that are catego-
rized as symbol and carry their meaning), symbol occurrences (their usage, i.e.
positions in text), and symbol presentations (their look, for instance the char-
acters to represent them). Symbol objects are typically abstract, invisible ob-
jects, that a user can create from within a definition interface. Figure 2 presents
CPoint’s symbol declaration form.

Fig. 2. Declaration of the Symbol Object ourPlus

CPoint’s MUI is concerned with two contrasting requirements: user-friendly

creation and presentation of symbols (as building blocks of mathematical for-
mula) in PPT and their conversion into the formal OpenMath format [Cap03].

Unfortunately, the term “user-friendly” refers to several different kinds of
users, so we want to specify our usage of the term. First, there are users, who
(ardently) prefer typing to clicking or vice versa. This differentiation is basically



a matter of taste and can be handled in parallel via different, coexistent inter-
faces (graphic and command line). For now, we restrict ourselves to a command
interface. In contrast, the discrimination into power users (expecting first and
foremost power) and casual users (expecting convenience for the task at hand
and immediate self-explanation) requires almost mutually exclusive interfaces.
Here, we decided to orient CPoint’s MUI towards the power user group, since
handling symbols is of a complex, dynamic nature. More specifically, symbol
presentations have not only to be concise and at the same time distinctive —
suggesting the usage of exceptional characters with possibly uncommon loca-

tions e.g.
∫ β

α
, but they are also used very individually. Moreover, the underlying

semantics have to be captured as well. From the power user’s point of view,
the flexibility and capability of LaTex [Lam94] for handling special glyphs and
two-dimensional layouts can be hardly topped. Therefore, the LaTex interface
yields our requirement of user-friendliness, hence CPoint’s MUI is modeled on
it. Fortunately, the idea to build a powerful LaTex interface in PPT is not new:
it is realized in the TEXPoint application as open-source software.

Using a LaTex interface has another advantage: LaTex code allows rigid
formalism and extensions. Thus, it can be transformed into XML based for-
mats like OpenMath, precisely which is implemented within the (open-source)
LaTeXML program.

Pragmatically, CPoint’s MUI makes use of these already existent LaTex

converters:

– by adapting and building upon TEXPoint’s way with symbols and
– by providing special LaTex inlays in the respective generated OMDoc doc-

uments to be transformed by LaTeXML into OpenMath expressions.

1.1 TEXPoint: LaTex in PPT

TEXPoint [Nec] is an open-source PPT add-in that supports LaTex input
in PPT. It was written by George Necula. It is widely accepted in campus
communities as a math user interface in PPT.

TEXPoint distinguishes two working modes. In inline mode the user can
type simple LaTex commands inside normal text like “Let \alpha, \beta be
real numbers.” where the LaTex macros are translated (i.e. looked up in a trans-
lation table) into the respective PPT characters α and β upon user request. In
this mode, the user keeps PPT’s facilities for optimizing the text’s presentation.
In contrast, in display mode all presentational aspects have to be dealt with in
LaTex. In particular, the user creates a LaTex expression in TEXPoint’s spe-
cial LaTex editor (from within the PPT application), which is formatted by
LaTex into a bitmap and displayed in the PPT document. The LaTex code is
stored with the bitmap, so that the code can be subsequently manipulated e.g.
in case of a simple typo. Furthermore — from CPoint’s point of view — the
stored LaTex code is additional markup and can be output into OMDoc.

TEXPoint’s strength consists in its input capabilities for mathematics (us-
ing well-known and powerful LaTex features) in the presentation-oriented PPT



environment. Nevertheless, there are two (in semantic respect major) drawbacks
in inline mode: TEXPoint is not extensible, i.e. LaTex macros cannot be cre-
ated by the user, and it doesn’t store the used LaTex code, so the markup
symbol information is lost.

1.2 LaTeXML: LaTex into XML-Based Formats

LaTeXML [Mil] is an open-source Perl program that transforms LaTex doc-
uments into XML documents. In particular, LaTex math expressions are con-
verted into OpenMath code (presuming that respective constructors exist). It
was written by Bruce Miller.

LaTeXML’s extension to being able to transform LaTex code inside of
XML documents into XML expressions is implemented at the moment in the
KWARC project at International University Bremen, Germany [Koh04c,Koh04d].

2 CPoint’s Math User Interface

In a nutshell, CPoint’s math user interface fully integrates math symbols into
PPT presentations by providing symbol presentations based on their underly-
ing semantics and a satisfying symbol input and formal symbol output system
(by supporting the input, storage, and output of LaTex code for symbol occur-
rences).

Fig. 3. CPoint’s MUI in Action: Recursive Use of the Symbol Macro yourPlus

To address CPoint’s MUI requirement of “user-friendly” creation and pre-
sentation of symbols, CPoint builds on TEXPoint’s LaTex input facilities,



but it extends its inline mode by addressing its shortcomings, particularly the
inextensibility of macros (see “Symbol Macros” in 2.1) and the loss of markup
information (see “Saving a Symbol’s Occurrence in Inline Text” in 2.1) in inline
mode.

Having the LaTex markup available empowers CPoint to output it in a
converted OMDoc document. With the usage of a slight variation of LaTeXML,
the user is able to convert the LaTex expressions in the (XML) OMDoc docu-
ment into OpenMath expressions (see 1.2).

Symbol macro management is supported, but on a rather basic level (see
2.2).

2.1 Extension of TEXPoint

On the one hand, CPoint generalizes TEXPoint’s handling of LaTex macros
(for symbols) to symbol macros, that are a special interpretation of CPoint’s
symbols and their presentations. On the other hand, it extends TEXPoint’s
LaTex storage from display mode to inline mode, so that this knowledge is not
only available in the OMDoc conversion process but also in the user’s authoring
process of the PPT document.

Fig. 4. CPoint’s MUI in Action (Hide Mode): Symbol Macro ourPlus

Technically, CPoint implements the additional functionality in its modules
(e.g. CPointAuthor) calling TEXPoint functions whenever sensible. With
respect to the MUI, CPoint can be considered an add-on to TEXPoint. Un-
fortunately, an integration of the two wasn’t possible for time reasons.

Symbol Macros CPoint offers an user interface for the presentation of a
previously defined symbol, where the presentations can be assigned in several



formats. Figure 5 and Figure 9 show the symbol presentations for the (fictive)
symbols ourPlus and yourPlus. The former determines the PPT character “‡”
as symbol PPT presentation, i.e. the character with character code 122 and
the respective defining PPT character properties (where the definitional quality
depends on the mark in the adjoining check-box) is the format of any occurrence
of the symbol ourPlus. In contrast, the symbol presentation for yourPlus is
given by a symbol LaTex presentation with the LaTex expression “\and”
(Figure 9). The symbol LaTex presentation “\ddagger” for the symbol ourPlus
is not used for its symbol occurrence, but it is output into the generated OMDoc
document.

Fig. 5. Symbol Presentation for the Symbol ourPlus

As ourPlus is determined to be a function, there are several symbol presen-
tation properties to assign like fixity, brackets, and the separator (see Figure 6).
These properties (available for functions and bindings) depend on each format
and therefore, they can be set via the “PP” button for each format separately.
For ourPlus there is a default for any format set. In particular, the function
ourPlus has a prefix notation with square brackets and “!” as a separator (re-
sulting in ‡ [a ! b] for arguments a,b).



Fig. 6. Symbol Presentation Properties for the Function ourPlus

By enabling the user to define an individual presentation for each annotated
symbol, CPoint can interpret the symbol’s name as a macro name, giving rise
to a symbol macro. The input of a backslash followed by a symbol’s name is
treated analogously to a LaTex command in TEXPoint’s inline mode, i.e. on
demand (see Figure 1) such a symbol macro command is replaced by its previ-
ously defined presentation. TEXPoint’s facilities are offered as a fallback option
if no individual symbol presentation exists. In particular, when using CPoint’s
symbol macro mechanism, a user accustomed to LaTex or TEXPoint can in-
put math into a PPT text as usual, he does not have to do overhead work by
annotating symbols and their presentations unless he wants to.

In Figure 4 we see an example for the usage of the symbol macro for ourPlus
and LaTex commands like \forall. Moreover, we overwrote the original La-

Tex translation for α and β by introducing new symbols alpha and beta to-
gether with a symbol PPT presentation fixing the characters and the color.

If the user just determines a symbol LaTex presentation for a certain symbol,
then this replaces the symbol command and is in turn interpreted by TEXPoint,
see for instance yourPlus’ symbol presentation in Figure 9 and LaTex presenta-
tion properties in Figure 10 resulting for instance in the associativity statement
of yourPlus in Figure 3. For functions with an associative fixity like yourPlus

there maybe n arguments, each of which can be simple text, LaTex commands,
or symbol macro commands themselves. The PPT input of the character “‘”
directly behind a symbol macro call implies the beginning of an argument list,
the “,” is fixed as an argument separator and “” ends the list.

Saving a Symbol’s Occurrence in Inline Text The main difficulty in saving
symbol macro commands in inline text is obvious: there may be more than one
symbol occurrence, so the exact position of the symbol macro command has to
be remembered as well as the command itself. CPoint provides the concept of
a math region that marks a selected text area by setting math brackets which
are (almost) invisible in the final PPT talk. By adding a math region id, this
concept enables us to align math regions with stored commands, i.e. to save the



Fig. 7. CPoint’s MUI in Action (Visualize Mode): ourPlus

position of each symbol’s occurrence and the symbol macro command with the
respective PPT object. To actually see hidden objects like math regions, we can
use CPoint’s “Visualize Mode”: Figure 4 and Figure 7 show a slide view in
Hide Mode and in Visualize Mode.

Naturally, the position information implies an object’s Math and Sym-

bol Macro View. In the former, the symbol macro commands (marked by a
backslash) are textually replaced by the most exact symbol presentation (rang-
ing from a symbol PPT presentation over a symbol LaTex presentation to a
TEXPoint translation) and a framing math region. In the latter, symbol pre-
sentations and the accompanying math regions are replaced by the respective
symbol macro commands and may get corrected by the user. The “Math” but-
ton executes the symbol commands (resulting in math presentation), whereas
the “Symbols” button replaces the symbol presentations with the symbol macro
commands (see Figure 1 for locating the buttons and Figure 3 to envision their
actions).

2.2 Symbol Macro Management

User-friendliness of a MUI requires to minimize the user’s actions, especially
redundant ones. So far, we have described CPoint’s math user interface for
exactly one PPT document. As the definition of a symbol presentation is local to
that document, the user can’t reuse his work in another PPT document which is
clearly unfavorable. Therefore, CPoint provides a symbol macro management



Fig. 8. CPoint Symbol Macro Management

tool in the CPoint manager1. Here, the user can specify certain PPT shows
(sometimes ambiguously called symbol presentations), whose symbols and their
presentations are read in when CPointAuthor is started (see Figure 8). Sub-
sequently, they are available in the MUI. Unfortunately, the dependency on the
local setting is still an unsolved problem.

Fig. 9. Symbol Presentation for the Symbol yourPlus

1 With the CPoint manager global parameters can be set and managed. They are
stored in a local CPoint initialization file.



Fig. 10. Symbol Presentation Properties for the Function yourPlus

3 Conclusion

Combining the features of the open-source software packages CPoint, La-

TeXML, and TEXPoint, math formulas (built on symbols) can be created and
updated in LaTex fashion inside Microsoft PowerPoint (CPoint, TEXPoint)
and converted into respective LaTex code in an OMDoc file (CPoint), which
in turn gets translated into OpenMath expressions (LaTeXML).

We expect CPoint’s acceptance in the TEXPoint user community, as it
extends TEXPoint’s inline mode in several useful ways (and doesn’t hinder its
usage at all). It supplements real added-value for a PPT content creator [KK04],
as math symbols are not mere ink marks in the final talk, but are semantically
specified as symbol occurrence. Furthermore, these “ink marks” can be set to
be non-standard characters with specified properties (like color). In particular,
it is possible to overwrite and/or extend TEXPoint’s choice of characters and
define new symbol macros, manipulated in turn in TEXPoint’s (inline mode)
command and (display mode) update fashion.

The advantage for an OMDoc author is more than obvious, since writing
math formulas can be done now in PPT with such a structure, that OpenMath

expressions can be deducted.
We can think of several improvements of CPoint’s math user interface. In

particular, almost all the information for direct OpenMath expression creation
(with arguments) exists in the CPoint data, this could be directly exploited.
Furthermore, the symbol macro management can be greatly improved, e.g. a
special symbol search interface. As with content objects in general, the naviga-
tion of math objects is lacking the necessary finesse, therefore more sophisticated
ways of navigation have to be invented and implemented. Finally, the input of
characters in the Symbol Presentation Properties Form (like brackets and sepa-
rators) could be extended from mere ASCII input to PPT character input (like
the one for the symbol presentation characters themselves).

Acknowledgments The development of the CPoint system has been funded
by the National Science Foundation under grant CCF-0113919 and a grant from



Carnegie Mellon’s Office for Technology in Education in the context of the
CCaps project [CC00]. The work presented here has benefitted from Michael
Kohlhase’s visions and his cooperation was highly appreciated. The author would
also like to thank the anonymous referees for valuable remarks, hints, and reusable
formulations.

References

[CC00] CCaps (Course Capsules). Carnegie Mellon University, 2000. Home Page
at http://www.cs.cmu.edu/∼ccaps.

[Cap03] The OpenMath standard, version 2.0. Technical report, 2003. The Open-
Math Society, http://www.openmath.org/standard/om20.

[KK04] Andrea Kohlhase and Michael Kohlhase. CPoint: Dissolving the Author’s
Dilemma. In Andrea Asperti, Grzegorz Bancerek, and Andrej Trybulec,
editors, Mathematical Knowledge Management, MKM’04, number 3119 in
LNAI. Springer Verlag, 2004.

[Koh04a] Andrea Kohlhase. CPoint Documentation. Carnegie Mellon University,
2004. Technical Manual http://www.faculty.iu-bremen.de/mkohlhase/
kwarc/software/CPoint.html.

[Koh04b] Michael Kohlhase. OMDoc An Open Markup Format for Mathematical
Documents (Version 1.2). 2004. Manuscript, http://www.mathweb.org/
omdoc/omdoc1.2.ps.

[Koh04c] Michael Kohlhase. The KWARC Project. International University Bre-
men, 2004. Program Home Page at http://www.faculty.iu-bremen.de/

mkohlhase/kwarc/index.htm.
[Koh04d] Michael Kohlhase. Semantic Markup for LATEX 2004. Workshop Mathe-

matical User-Interfaces (MathUI) at MKM04.
[Lam94] Leslie Lamport. LaTeX: A Document Preparation System, 2/e. 1994. Ad-

dison Wesley.
[Mil] Bruce Miller. LaTeXML: A LaTex to XML Converter. Web Manual

at http://dlmf.nist.gov/LaTeXML/.
[Nec] George Necula. TEXPoint. Program Home Page at http://raw.cs.

berkeley.edu/texpoint/index.htm.


