Semantic Markup for TEX/LATEX

MICHAEL KOHLHASE

School of Engineering & Science

International University Bremen, Germany

http://www.faculty.iu-bremen.de/mkohlhase

The MKM Authoring/Migration Problem

- Very interesting Systems for Mathematical Knowledge Management (MKM)
- They promise to navigate/index/search/adapt/...large corpora of MK
- Problem: where is the beef?
- Possible sources:
 - libraries from theorem proving- and program verification and computer
 algebra systems (most of us do that)
 - Write your own in MATHML/OPENMATH/OMDoc/... (very tedious)
 - convert from SGML/Office engineering documents (difficult to get)
 - adapt from MS PowerPoint documents (see later talk)
 - migrate from existing TEX/ETEX documents (There's the beef)
- TEX/LATEX is a power-user's interface to mathematics!

 ${f IU^B}ig)$

MKM Formats

• Definition: A MKM format is a content-oriented representation language for mathematics, that makes the structure of the mathematical knowledge in a document explicit enough that machines can operate on it.

• Examples:

- (so we get a feeling)
- Document Markup: LATEX, DocBook, TEI, OMDoc... (but not TEX)
- Formula Markup: Mathematica, Maple, OpenMath,
 Content-MathML (but not Presentation-MathML)
- Theory/Context Markup: MAYA, CASL, OMDOC (but not TEX/LATEX)
- Goal of this talk: Make TEX/ETEX into a MKM format on all levels.
 - allow to add explicit structure markup without changing presentation
 in particular, provide infrastructure for formula and theory/context markup.
 - enable translation into traditional MKM formats.

(solve (part of) the MKM authoring/migration problem)

 $(\mathbf{U^B})$

TEX/ETEX as MKM Format: The Notation/Context Problem

• idiosyncratic notations that are introduced, extended, and discarded on the fly

$$\lambda X_{\alpha} X =_{\alpha} \lambda Y_{\alpha} Y \hat{=} \mathbf{I}^{\alpha}$$

meaning of α depends on the context: object type vs. mnemonic vs. type label.

- even "standard notations" depend on the context, e.g. binomial coefficients: $\binom{n}{k}$, ${}_nC^k$, C^n_k , and C^k_n all mean the same thing: $\frac{n!}{k!(n-k)!}$ (cultural context)
- Notation scoping follows complex rules (notations must be introduced)
 - "We will write $\wp(S)$ for the set of subsets of S" (for the rest of the doc)
 - "We will use the notation of [BrHa86], with the exception...". (by reference)
 - "Let S be a set and $f: S \to S...$ " (scope local in definition)
 - "where w is the..." (scope local in preceding formula)
 - A book on group theory in Bourbaki series uses notation [Bourbaki: Algebra]

 ${f IU^B}ig)$

TEX/ETEX as MKM Format: The Reconstruction Problem

- Mathematical communication relies on the inferential capability of the reader.
- semantically relevant arguments are left out (or ambiguous) to save notational overload
 (reader must disambiguate or fill in details.)

$$\log_2(x)$$
 vs. $\log(x)$ $[\![\mathbf{A}]\!]_{\varphi}^{\mathcal{M}}$ vs. $[\![\mathbf{A}]\!]$

- condensed notation: $f(x+1)\pm 2\pi = g(x-1)\mp 2i$ (stands for 2 equations)
- ad hoc extensions: $\#(A \cup B) \le \#A + \#B$ (exceptions for ∞)
- overt ambiguity: $\sin x/y$ vs. $\frac{\sin x}{y}$ vs. $\sin \frac{x}{y}$ vs. $-1 \le \sin x/\pi \le 1$
- size of the gaps varies with the intended readership and the space constraints.
- can be so substantial, that only a few specialists in the field can understand

©: Michael Kohlhase

The STEX approach

- The reconstruction and the notation/context problem have to be solved to turn or translate TEX/ETEX into a MKM format
- Problem: This is impossible in the general case (Al-hard)
- Idea: Enable the author to make structure explicit and disambiguate meanings
 - use the TEX macro mechanism for this (well established)
 - the author knows the semantics best (at least he understands)
 - the burden is is alleviated by manageability savings $(MKM \text{ on } T_EX/E^TEX)$
- STFXApproach: Semantic preloading of TFX/ETFX documents.

A Phenomenology of TEX/ETEX macros

- Abbreviative Macros: define a new control sequence for a sequence of TEX tokens, which is expanded in document formatted.
- Semantic Macros: stand for semantic objects and expand to a presentation of the object. For instance a semantic macro for $\mathcal{C}^{\infty}(\mathbb{R})$ is

```
\def\SmoothFunctionsOnReals{{\cal C}^\infty({\mathbb R})}
an (even more semantic) variant would be
\def\Reals{{\mathbb R}}
\def\SmoothFunctionsOn#1{{\cal C}^\infty(#1)}
\def\SmoothFunctionsOnReals{\SmoothFunctionsOn\Reals}
first two are semantic, the last one abbreviative (only one char shorter)
```

• If we use $\left[n\right]_{k}$ instead of $\left[n\right]_{k}$ or $\left[n\right]_{k}$, we can change the notational standard by just changing the definition of the control sequence $\left[n\right]_{k}$

A Phenomenology of TEX/ETEX macros (continued)

• Elliptive Macros: for leaving out "obvious" arguments

```
\label{left[kern-0.18em|left[#1|right]|kern-0.18em|right]^{#2}_{#3}}} $$ \left( \min_{1 \leq m+1} \left( \sum_{1 \leq m} \right) \right) $$ \left( \min_{1 \leq m+1} \left( \sum_{1 \leq m} \right) \right) $$ \left( \min_{1 \leq m+1} \left( \sum_{1 \leq m} \right) \right) $$ \left( \min_{1 \leq m} \left( \sum_{1 \leq m} \right) \right) $$ \left( \min_{1 \leq m} \left( \sum_{1 \leq m} \left( \sum_{1 \leq m} \right) \right) \right) $$ \left( \min_{1 \leq m} \left( \sum_{1 \leq m} \left( \sum_{1 \leq m} \left( \sum_{1 \leq m} \right) \right) \right) $$ \left( \sum_{1 \leq m} \left( \sum_{1
```

- \interpret{A}{\cal M}\phi introduces $[A]_{\varphi}^{\mathcal{M}}$.
- In the expressions $[\![A]\!]^{\mathcal{M}}$, $[\![A]\!]_{\varphi}$, and $[\![A]\!]$ we elide information: φ and \mathcal{M} are relevant semantically, but not presented, since it can be inferred by the reader.

Converting TEX/ETEX Documents to XML

- HERMES [Anghelache] and TEX4HT [Gurari] use the TEX parser, seed the DVI file with semantic information, parse DVI for transformation.
- LATEXML [Miller] and SGLR/ELAN4 [van den Brand, Stuber] reimplement the TEX parser. (do not expand semantic macros)
- Case Study: Converting Intro Computer Science to OMDoc via semantic preloading and LATEXML
- LATEXML workflow:

(used in our case study)

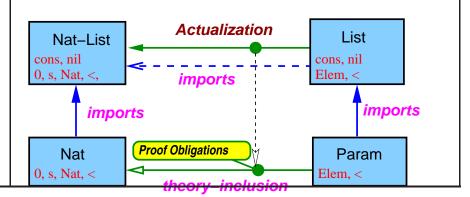
- LATEXML = TEX parser + XML emitter + post-processing pipeline.

OMDoc in a Nutshell (three levels of modeling)

Formula level: OPENMATH/C-MATHML

- Objects as logical formulae
- semantics by ref. to theory level

<OMA> <OMS cd="arith1" name="plus"/> <OMS cd="nat" name="zero"/> <OMV name="N"/> </OMA>


Statement level:

- Definition, Theorem, Proof, Example
- semantics explicit forms and refs.

<definition for="plus" type="rec."> <CMP>rec. eq. for plus</CMP> <FMP>X+0 = X</FMP> <FMP>X+s(Y) = s(X+Y)</FMP> </definition>

Theory level: Development Graph

- inheritance via symbol-mapping
- theory-inclusion by proof-obligations
- local (one-step) vs. global links

The STEX Packages: Statement Markup

Running example from 320101 General Computer Science I

Theorem: //.//./ is not a unary natural number.
Proof: We make use of the induction axiom P5:

we show that every unary natural number is different from //.//.//
by convincing ourselves of the prerequisites of P5.
we have two cases:

base case: '/' is not //.//.//
step case: If a number is different from //.//.//, then its successor is also different from //.//.//.
Thus we have considered all the cases and proven the theorem.

STEX Markup for the Example

```
\begin{assertion}[type=Theorem,id=not-un]{}
 $//.//$ is not a unary natural number.
\end{assertion}
\begin{proof}[id=not-un-pf,for=not-un]{We make use of the induction axiom P5:}
 \begin{step} we show that every unary natural number is different from $//.//./$
   by convincing ourselves of the prerequisites of P5:
   \begin{justification} [method=apply-axiom, premises={ax5}]
      \begin{pfcases}{we have two cases}
        \begin{pfcase}[id=foo]{base case}
          \begin{step}[display=flow]'', is not $//.///./$
            \begin{justification} [method="trivial"] obvious \end{justification}
          \end{step}
        \end{pfcase}
        \begin{pfcase}[id=bar]{step case}
          \begin{step}[display=flow] If a number is different from $//.///.//$, then
             its successor is also different from $//.///.//$.
            \begin{justification}[method="blast-eq"]by inspection\end{justification}
          \end{step}
\end{proof}
```

The Generate OMDoc for the Example

```
<assertion type="theorem" id="not-un"</pre>
 <CMP><legacy format="TeX">//.//</legacy> is not a unary natural number.</CMP>
<assertion>
cproof id="not-un-pf" for="not-un">
 <CMP>We make use of the induction axiom P5:</CMP>
 <derive id="d1"/>
   <CMP>we show that every unary natural number is different from $//.//./$
   by convincing ourselves of the prerequisites of P5</CMP>
   <method xref="apply">
     cpremise xref="ax5"/>
     of id="foo"><metadata><Title>base case</Title></metadata>
        <derive id="c1"><CMP>'/' is not $//.///.//$</CMP>
          <method xref="trivial"><omtext><CMP>obvious</CMP></omtext></method>
       </derive>
     </proof>
     of id="bar"><metadata><Title>step case</Title></metadata>
        <derive id="c2">
          <CMP>If a number is different from $//.//./$, then its
             successor is also different from $//.///.//$.</CMP>
          <method xref="eq-blast"><omtext><CMP>by inspection</CMP></omtext></method>
</proof>
```

STEX Modules help with the Notation/Context Problem

- Note: the context of notations coincides with the context of the concepts they
 denote
- Idea: Use the theory structure for notational contexts
 - The scoping rules of T_EX/ET_EX follow a hierarchical model:
 - a TEX macro is either globally defined or defined exactly inside the group given by the group induced curly braces hierarchy.
- Solution: provide explicit grouping for scope with inheritance.
 - new STEX environment module,
 - new macro definition \symdef, scoped in module
 - specify the inheritance of \symdef-macros in module explicitly
 - \symdef-macros are undefined unless in home module or inherited.

STEX Modules: Example

```
\begin{module}[id=pairs]\symdef{\pair}[2]{\langle#1,#2\rangle} ...\end{module}
\begin{module}[id=sets]
     \symdef{\member}[2]{#1\in #2} % set membership
     \symdef{\mmember}[2]{#1\in #2} ... % aggregated set membership
\end{module}
\begin{module}[id=setoid,uses={pairs,sets}]
     \symdef{\sset}{{\cal S}}
                                                                                                                  % the base set
     \symdef{\sopa}{\circ}
                                                                                                                   % the operation symbol
     \symdef{\sop}[2]{(#1\sopa #2)}
                                                                                                                        % the operation applied
     \begin{definition}[id=setoid-def]
          A pair $\pair\sset\sopa$ is called a setoid, if $\sset$ is closed under
          $\sopa$, i.e. if $\member{\sop{a}{b}}\sset$ for all $\mmember{a,b}\sset$.
     \end{definition}
\end{module}
\begin{module}[id=semigroup,uses=setoid]
     \begin{definition}[id=setoid-def]
          A setoid $\pair\sset\sopa$ is called a monoid, if $\sopa$ is associative on
          s, i.e. if s if s, i.e. if s if 
     \end{definition}
\end{module}
```

The Result of the Example

Definition: A pair $\langle \mathcal{S}, \circ \rangle$ is called a setoid, if \mathcal{S} is closed under \circ , i.e. if $(a \circ b) \in \mathcal{S}$ for all $a, b \in \mathcal{S}$.

Definition: A setoid $\langle \mathcal{S}, \circ \rangle$ is called a monoid, if \circ is associative on \mathcal{S} , i.e. if $(a \circ (b \circ c)) = ((a \circ b) \circ c)$ for all $a, b, c \in \mathcal{S}$.

- Empirically: Explicit module structure
 - is a little overhead

(can be automated)

Feels safer

(but I might be brainwashed)

ullet In our case study: 320 slides, 160 modules, depth ~ 20

STEX Modules and LATEXML Bindings

• Idea: Supply the LATEXML bindings together with the semantic macros

Or shorter: \latexmlconstructor{\pair}[args=2,cd=pairs,name=pair]

• STEX moves macro definitions back into documents

(like in OOP)

- differentiate macros for "late binding effects"
 - late binding enables styling

- (good for presentational macros)
- late bindings potentially changes meanings
- (bad for semantic macros)
- Empirically: STEX modules are great candidates for semantic reuse

Elliptive Macros

- elliptive macros differ from semantic macros only in their LATEXML binding
- preload the elided arguments, but do not show them

```
\label{lemain} $$ \left(\frac{m}{2}_{\int_{\infty}^{\infty}} \right) \le \sup_{\infty} \int_{\infty}^{\infty} \| \sup_{\infty} \| \sup_{\infty}
```

• LATEXML bindings instruct to elide arguments in the transformation

equivalent to

(make use hinting for presentation engine)

```
\latexmldef{\interm}[2]{%
                                                     <AMO>
 <qqAMX>
   <XMTok cd='booeaneval' name='interpret'/>
                                                       <OMS cd='booeaneval' name='interpret'/>
   <XMArg>#1</XMArg>
                                                       <OMV name="A"/>
   <XMArg elide='yes'>#2</XMArg>
                                                        <OMS style="display:none"</pre>
   <XMArg>
                                                            cd="booeaneval" name="themodel"/>
     <XMTok cd='booleaneval' name='assign'/>
                                                       <OMS cd="booeaneval" name="assign"/>
   </XMArg>
 </XMApp>}
                                                    </MA>
```

Conclusion and Further Work

- turn TEX/LATEX into a MKM format by enabling semantic preloading (finally)
- STEX+LATEXML = invasive editor for TEX/LEX
- together with CPOINT and NB2OMDOC covers paradigmatic document formats.
- Future work (this is just the beginning)
 - semantically preload the OMDoc book
 - *.aux files for external modules (import modulo renaming/re-presentation?)
 - improve LATEXML postprocessing (type-analysis,part-of-speech,...)
 - HERMES/TEX4HT/generalized bindings?
 - more output formats XHTML+MATHML, CONNEXIONS
- Acknowledgments: David Carlisle (TEX/ETEX consulting)

Bruce Miller (extended LATEXML)

Ioan Sucan (preloaded General CS I/II slides)

 ${f IU^B}ig)$