
Decision Complexity in Dynamic Geometry

Ulrich Kortenkamp1 and J̈urgen Richter-Gebert2

1 Institut für Informatik, Freie Universiẗat Berlin, Takustr. 9, 14195 Berlin, Germany,
kortenkamp@inf.fu-berlin.de

2 Institut für Theoretische Informatik, ETH Z̈urich, ETH Zentrum IFW, 8092 Z̈urich,
Switzerland,richter@inf.ethz.ch

Abstract. Geometric straight-line programs [5, 8] can be used to model geo-
metric constructions and their implicit ambiguities. In this paper we discuss the
complexity of deciding whether two instances of the same geometric straight-line
program are connected by a continuous path, theComplex Reachability Problem.

1 Introduction

Straight-line programs and randomized techniques for proving their equivalence did
find their application in geometric theorem proving. Using estimates for the degrees of
the variables of a multivariate polynomial given by a straight-line program and eval-
uations for some random samples, we can prove geometric theorems with much less
computational effort than usual [2, 14], for example compared to symbolic methods
using Gr̈obner bases.

An apparent drawback of polynomials is that we have to refer to systems of poly-
nomial equations as soon as we want to describe theorems involving circles or conics.
Although there are very powerful methods to do theorem proving in these contexts (e.g.
Wu’s method, see [13, 12]), it is desirable to have a concept like straight-line programs
that is able to describe constructive theorems, and is able to model the dynamic as-
pects of theorems as they occur in dynamic geometry systems. The implementation of
one dynamic geometry system [7, 9] caused the definition ofgeometric straight-line
programs, which are one way to approach the above issues.

One question that must be settled before we could use techniques similar to the
methods of Schwartz and Zippel [10, 6] to prove geometric theorems is the question of
(complex) reachability: Can we move one instance of a geometric theorem continuously
into another instance? This paper describes first results on the algorithmic complexity
of this question.

2 Geometric Straight-Line Programs

Geometric straight-line programs extend the concept of straight-line programs (see the
book of Bürgisser et al. [1] for a detailed discussion of straight-line programs). Infor-
mally, a straight-line program (SLP) is a sequence of operations (usually addition, mul-
tiplication, subtraction, and sometimes division) that operate on a certain input (usually
values of some algebraA) or intermediate results from previous operations.

168

Straight-line programs are important due to the fact that they provide a very compact
description of multivariate polynomials (or rational functions, if we allow divisions).
The degree of the polynomials can be much higher than the length of the straight-line
program (up to exponential).

In [5] it is shown that geometric constructions using points and lines as objects, and
meets and joins as operations, are equivalent to straight-line programs over IR orC. In
a way this is a consequence of von-Staudt’s approach, who has shown that there is a
coordinate-free description of projective geometry [3].

As soon as we want to describe constructions that involve ambiguous operations
(like Intersection of Circle and Line, Intersection of Circle and Circle, orAngular Bisector
of two lines) the concept of straight-line programs fails. Better said, it is not possible to
describe constructions with varying input parameters that behavecontinuouslyusing
straight-line programs.

Geometric straight-line programs (GSPs)are a way to keep a concise algebraic
description even for constructions involving ambiguous operations. The operations of
a straight-line program are replaced by relations from a suitablerelational instruction
set (RIS). The objects can be choosen arbitrarily, as long as they match the relations.
In this paper we will deal with the complex numbersC as objects and the RISR :=
{+,−,∗,±

√
·} only, and we will emphasize this sometimes by calling themcomplex

GSPs.
Again, we refer to [5] for a more formal and detailed description. Here we rely on

the readers‘ intuition and introduce geometric straight-line programs using an example.

Example 1 (A GSP on(C,R)). Here is a GSP encoding the expression±
√

z1
2 +z2

2,
with two input variables. The negative indices denote input variables, the other ones
index the intermediate results. All statements refer to the indices of previous results or
input variables.

Index Statement Remark
−2 z2 Input
−1 z1 Input
0 ∗(−1,−1) z1

2

1 ∗(−2,−2) z2
2

2 +(0,1) z1
2 +z2

2

3 ±
√
·(2) ±

√
z1

2 +z2
2

A fundamental difference between ordinary straight-line programs and GSPs is that
we cannot just “run through” the statements of a GSP in order to calculate the expres-
sion for a given input. This is due to the fact that the relations can have different valid
outputs for the same input. This gives rise to the notion of aninstanceof a GSP, an
assignment of the input parameters and all intermediate results that is compatible with
the relations.

Example 2 (Instance of a GSP).An instance for the GSP above is given by

169

Index Value Remark
−2 3 Inputz2

−1 4 Inputz1

0 16 z1
2

1 9 z2
2

2 25 z1
2 +z2

2

3 −5 ±
√

z1
2 +z2

2

Observe that all but the last value are determined by the input, and there is only one
other instance with the same input (where the last value is 5).

Moving GSPs

For polynomials, or straight-line programs, it is easy to speak about dynamic changes
of the input parameters. Since the value of all intermediate results of an SLP is deter-
mined by the input, we can vary the input parameters and recalculate the polynomial.
Of course, the intermediate resultsare polynomials in the input variables, and as such
they are analytic functions, in particularcontinuous.

If we want to do the same with GSPs we must specify how to resolve ambiguities. A
natural requirement would be that the intermediate results should be continuous func-
tions in the input parameters. A direct consequence is that the intermediate results must
beanalytic[5] in the following way: LetU := (u1, . . . ,un),V := (v1, . . . ,vn)∈Cn be two
inputs for a complex GSP, and letγ: [0,1] 7→Cn be a path fromγ(0) = U to γ(1) = V. If
we can find instances of the GSP for everyλ ∈ [0,1] such that every intermediate result
is an analytic function inλ for λ ∈ (0,1) and a continuous function forλ ∈ [0,1], then
these instances form an analytic path.

Here are two examples showing the subtilities of analytic paths:

Example 3 (Square Root).Take the complex GSP with one input that has the±
√
·-

Relation as the one and only statement, and consider the path

γ: [0,1] 7→ C

γ(λ) = e2iπλ

For each of the two possible choices atλ = 0 there is a unique assignment of instances
for λ∈ (0,1] to form an analytic path, which is the proper branch of the complex square
root function. The value of the square root atλ = 1 will be the negative of the value at
λ = 0.

We can find this path by doing analytic continuations alongγ, and here in this ex-
ample it is clear that we can do this for all paths avoiding 0 forλ ∈ (0,1), and only
these.

Example 4 (Roots of squares).Take the complex GSP with one inputz and with two
statements, first multiplying the input with itself and then the±

√
·-Relation. The first

intermediate result, the square of the input, is determined by the input, and since it is a
polynomial, it is analytic in the inputz, so it is analytic for any analytic functionγ.

170

The second relation can be simplified to either+z or −z, but not to the absolute
value function|x|, since this would destroy analyticity. We do not have to consider a
special path to observe this, it holds for any path.

In the second example there is not always a need to avoid the 0 for the square
root function, for example for the pathγ(λ) = 2λ−1 there are instances that make it
analytic. However, in most considerations it will be a good idea to avoid any zeros of
square roots, since these are the critical points where singularities can occur.

3 Complex Reachability and Testing of Polynomials

A problem in straight-line program analysis is to decide whether a given straight-line
program is equivalent to another one, i.e. whether it describes the same polynomial (or
rational function). The algorithmic complexity of this decision problem is unknown,
but there exist polynomial-time randomized algorithms [10]. The main obstacle is that
we can neither handle the full, symbolic expression for the polynomial, since the coeffi-
cients and the degree of the polynomial can be large, nor the evaluation of the straight-
line program for sufficiently large numbers, since the coding length for the intermediate
results becomes too large.

If we could find an algorithm to test equivalence of straight-line programs effi-
ciently, then their range of application could be extended to efficient encodings of large
numbers. It would also be possible to derive efficient deterministic algorithms to prove
geometric theorems.

We will now formulate a version of this decision problem which is equivalent to the
equivalence testing problem.

[SLP zero testing] Given a division-free straight-line programΓ over Q with
one input variable. Is the polynomialp encoded byΓ the zero polynomial?

We will show that this problem is at most as hard as deciding whether we can move
analytically from one instance of a GSP to another instance of the same GSP that is
different at exactly one intermediate result by giving a polynomial transformation from
[SLP zero testing] to the following decision problem:

[Complex Reachability Problem] Given two instances of a complex GSP with
one input variable that differ in exactly one intermediate result. Is it possible to
move analytically from the first instance to the second?

We will prove the following theorem, with this corollary as an easy consequence:

Corollary 1. The[Complex Reachability Problem] is algorithmically at least as hard as
[SLP zero testing].

Theorem 1. There is a polynomial transformation of[SLP zero testing] to the [Com-
plex Reachability Problem], i.e. we can answer an instance of[SLP zero testing] by
transforming it to an instance of the[Complex Reachability Problem] and answering
this.

171

Proof. First, we have to clarify how we specify an instance of a complex GSP in a
polynomial size of the encoding length of the GSP (where the encoding length of the
GSP is the number of bits needed to write down all statements of the GSP). We will
deal with GSP inputs that have polynomial encoding length, and then we just have to
specify for each±

√
·-statement which solution we choose. This can be done using one

bit for each decision, saying to choose the solution with the smaller or equal angle in
the polar coordinate representation of the two possibilities. We denote an instance by
writing down all values of the input variables and a+ or− for each decision bit.

Observe that there is no need to evaluate the GSP; indeed, wemust notevaluate the
GSP since this could take exponential time.

Having done this, we assume to have an SLPΓ of lengthn with one input variable
z and want to know whether it describes the zero polynomial. Let us refer to the last
result, the polynomial, byp(z).

Let M be the largest constant that can be created using a straight-line programΓM

of lengthn and with encoding length less or equal to the encoding length ofΓ. Using
one additional statement we can write a straight-line programΓ2M that evaluates to 2M.
Thus we can transformΓ in polynomial time and space toΓ′ which evaluatesp(z)+2M.
Due to the construction ofΓ′ the value atz= 0 of Γ′ cannot be 0.

Now we add one additional statement toΓ′ in order to evaluate±
√

p(z)+2M.
Let the new GSP beΓ1. In a similar way, we also create a GSPΓ2 that evaluates
±

√
zp(z)+2M. This requires just one additional statement compared toΓ1

These two GSPs can be used to decide the zeroness ofp(z) using the complex
reachability decision. Let(z= 0,+) be the start instance, and(z= 0,−) the end instance
for bothΓ1 andΓ2.

Now we claim that the reachability decision will be “not reachable” for bothΓ1

andΓ2 if and only if p(z) is the zero polynomial. For the⇐ direction we observe that
p(z)+ 2M = 2M andzp(z)+ 2M = 2M, i.e. the arguments of the±

√
·-statement are

constant and non-zero. So they can never change continuously from one sign decision
to the other.

For the⇒ direction we note thatp(z)+2M andzp(z)+2M are two polynomials of
even and odd resp. odd and even degree ifp(z) 6≡ 0. This means that at least one of them
has a root of odd multiplicity at, say,z0. But this means that we can change the sign of
the square root by following a path fromz= 0 toz= z0+ε, cycling once aroundz0 and
going back fromz= z0 + ε to z= 0. So for at least one ofΓ1 andΓ2 the reachability
decision will be “reachable.” ut

4 Remarks

The paper “Randomized Zero Testing of Radical Expressions and Elementary Geom-
etry Theorem Proving” by Daniela Tulone, Chee Yap and Chen Li, that was also pre-
sented at ADG 2000, also introduces square roots for straight-line programs. The main
difference between our two approaches is that we rely on the implicit sign decision for
our notion of geometric theorems, which is different from the usual notion of theorems
given by polynomial equations for hypothesis, non-degeneracies and conclusions. Also,

172

since we only work with complex numbers, we cannot state theorems that are given by
semi-algebraic varieties.

Nevertheless, it seems that both the results of both papers can be combined in one
or the other way, which we will try to do in our further investigations.

Kurt Mehlhorn pointed out that our transformation shows not only that the complex
reachability problem is as hard as to find out whether a polynomial is the zero polyno-
mial, but also as hard as to find out whether a polynomial has at least one root of odd
degree.

References

1. Peter B̈urgisser, Michael Clausen, and M. Amin Shokrollahi.Algebraic Complexity Theory,
volume 315 ofA Series of Comprehensive Studies in Mathematics, chapter 4, pages 103–124.
Springer-Verlag, Berlin Heidelberg New York, 1997.

2. Mike Deng. The parallel numerical method of proving the constructive geometric theorem.
Chinese Science Bulletin, 34:1066–1070, 1989.

3. Hans Freudenthal. The impact of von Staudt’s foundations of geometry. In R. S. Cohen, J. J.
Stachel, and M. W. Wartofsky, editors,For Dirk Struik, pages 189–200. D. Reidel, Dordrecht-
Holland, 1974. An article emphasizing the foundation-laying contribution (in terms of purely
algebraic description) of von Staudt to projective geometry.

4. Erich Kaltofen. Greatest common divisors of polynomials given by straight-line programs.
Journal of the Association for Computing Machinery, 35(1):231–264, January 1988.

5. Ulrich Kortenkamp.Foundations of Dynamic Geometry. Dissertation, ETH Z̈urich, October
1999.

6. Rajeev Motwani and Prabhakar Raghavan.Randomized Algorithms, chapter 7. Cambridge
University Press, Cambridge, 1995.

7. J̈urgen Richter-Gebert and Ulrich Kortenkamp.The Interactive Geometry Software Cin-
derella. Springer-Verlag, Heidelberg, 1999.

8. J̈urgen Richter-Gebert and Ulrich Kortenkamp. Complexity issues in Dynamic Geometry. In
Proceedings of the Smale Fest 2000, Hongkong, 2000.

9. J̈urgen Richter-Gebert and Ulrich Kortenkamp.Die interaktive Geometriesoftware Cin-
derella. HEUREKA-Klett Softwareverlag, 2000.

10. Jacob T. Schwartz. Probabilistic algorithms for verification of polynomial identities.
11. Volker Strassen. Berechnung und Programm I.Acta Informatica, 1:320–335, 1972.
12. Wen-ts̈un Wu. On the decision problem and the mechanization of theorem-proving in ele-

mentary geometry.Contemp. Math., 29:213–234, 1984.
13. Wen-ts̈un Wu. Mechanical Theorem Proving in Geometries. Basic Principles. Transl. from

the Chinese by Xiaofan Jin and Dongming Wang.Texts and Monographs in Symbolic Com-
putation. Springer-Verlag, Wien, 1994.

14. Jingzhong Zhang, Lu Yang, and Mike Deng. The parallel numerical method of mechanical
theorem proving.Theoretical Computer Science, 74:253–271, 1990.

