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Abstract. The large variety of form factors to view web pages and the proliferation of the pinch-
to-zoom paradigm requires web-content to adapt both font sizes and reflow to the requirements
of diverse displays and varying magnifications. For specialist web content, such as mathematical
formulas, this is not straight forward. We present a first approach to responsive equations, a
rendering method for MathML that adapts gracefully to small screens. The main idea is to
reduce the size of equations by abstracting well-defined parts of formulas without obscuring
the overall structure of an expression. We achieve this by embedding a semantic structure into
the MathML representation underlying the rendering process and by collapsing mathematically
meaningful sub-expressions.

1 Introduction

Mathematical notation is a cornerstone of scientific literature and with more and more teaching and
research material being published in purely electronic form the electronic display of mathematics has
become an important topic. MathML is the only specialist markup language that has been made part
of the HTML5 and epub3 standards. While this was an important first step, there is still a long way
to go before Mathematical notation becomes a first-class citizen of the web. Not only is MathML not
implemented in all browsers or eBook readers, forcing developers and content providers to use polyfill
solutions like MathJax [4] to ensure that content renders consistently across all platforms, but also the
production of mathematical content is still mainly done in a “print-first” manner, giving little thought
to the special requirements and opportunities of electronic display. For example, rigid, tabular layout
is ported directly from print, making it difficult to adjust its display for different form factors or to
exploit features like zooming or panning.

In the past five years, the notion of responsive web design (RWD), introduced in [1] (cf. also [13]),
has been firmly established as the dominant design paradigm on the web. RWD aims to dynamically
optimise the layout of a page depending on the capabilities of the end user’s device. The dominating
features of RWD are fluid grids for content, flexible images, and media queries. The related (and older)
concept, “progressive enhancements”, cf. [8], leverages feature and (client or server-side) user-agent
detection to enrich the content and rendering.

While RWD offers a firmly established methodology, tools, and workflows for content such as text,
menus, and widgets, the notion of responsive design for complex content fragments is still in its infancy.
This includes responsive tables [14] and responsive SVG [10]. In addition, data visualisation tools such
as D3.js allow dynamic rendering of scientific data that shares some of the traits of responsive design
as their dynamic nature enables developers to modify them on the fly, cf. [9].

For MathML, native browser implementations, i.e., Gecko and WebKit, do not yet provide line-
breaking support. Under these circumstances, it might not be surprising that the notion of responsive
rendering has not even been attempted yet; that is, no new visual concepts have been explored that
work with the fabric of the web, similar to the attempts for tables and SVG. Unlike regular text that
can be easily broken down into paragraphs, sentences, etc., regardless of their meaning, it is difficult to
identify meaningful components in mathematical formulas without having some information on their
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actual semantics. In particular, issues like line-breaking, which are straight-forward for regular text,
are difficult for MathML renderers, as large expressions often have to be broken over multiple lines;
this makes the formula hard to read, and when done badly, can render it practically meaningless.

Consider the example in Table Table 1 that is part of an answer on math.stackexchange.com, [5].
Not only is the expression rather large and unwieldy, it also is given in a pre-formatted tabular style
that makes it difficult to decide on both visually pleasing and mathematically accurate line breaks.
Moreover, some of the sub-expressions, like the annotation using an underbrace or the wide fraction
elements, do not lend themselves at all to line breaking. Consequently display and reading of the
expression on a small form factor can be very awkward.
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Table 1. Example of mathematics “in the wild” taken from math.stackexchange.com.

We currently address these issues within MathJax. In particular, we are developing new render-
ing methods for mathematical notation that allow for a responsive reading experience regardless of
platform or form factor. The basic idea is to enrich standard MathML notation with semantic infor-
mation computed by a heuristic interpretation of the Presentation MathML elements and use that
to make informed decisions about how to adjust the layout to fit the available screen space. We use
a coarse-grained semantic model that aims to capture the total mathematical notation, including in-
terpretations for purely presentational artefacts, such as the underbrace in the example above, rather
then determining a precise mathematical semantic that would severely restrict the types of expressions
we could handle. The semantics effectively provide the original MathML expression with a secondary
structure; and while the expression can be rendered as usual, the semantic markup can be exploited
for a number of enhanced rendering effects. As a simple application, the semantic information can
be exploited for better line-breaking. As an advanced application we enable truly responsive notation
that will collapse equations to fit the screen size by using semantic knowledge to determine appropri-
ate parts of the equation to hide or reveal. The responsive rendering provides a good overview of an
expression and a simple UI allows readers to fully explore its content when needed. This design not
only breaks with traditional layout paradigms to adapt to reading habits on small screens, but also
has the potential to construct summaries of expressions on multiple layers, which can be exploited by
assistive technology tools such as screen readers.

2 Semantic Enrichment

The semantic enrichment procedure is based on a semantic tree transformation for MathML elements
that was originally designed and implemented in the context of making Mathematical notation ac-
cessible in the screenreader ChromeVox [11]. It constructs a semantic interpretation of an expression
purely by analysing the syntactic structure of the MathML elements, while aiming to stay faithful
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to the given notation, and not fixing too much of the semantics, which could lead to false inter-
pretations. It consequently provides a much more shallow interpretation than a full blown semantic
markup language like Content MathML [2]. In this sense it is more similar to LaTeXML’s internal
format [7] or SnuggleTeX’s initial semantic enrichment process [6], which concentrate primarily on
the interpretation of symbols occurring in expressions. It therefore furthers our goal to enhance the
presentation markup, rather than replacing it by a purely semantic representation. Nevertheless we
believe that our current set of heuristics can be viewed as an intermediate step towards full semantic
markup and, provided with additional context or domain information, could lead to a translation into
Content MathML or a similar format.

We will first briefly sketch the major ideas of the semantic tree and then describe how its infor-
mation is integrated into existing MathML structures.

2.1 Semantic Tree

The main problem for semantic enrichment of Presentation MathML is to transform its flat structure
into one that correctly determines the scope of operators, relations, etc. Our approach aims to represent
a formula in a semantic tree structure akin to a term tree. The semantic tree is assembled bottom-up,
where we first classify the single components of an expression, giving each an immutable type and a
mutable role. The former aims to capture the basic nature of the symbol, while the latter is used to
describe the role of a symbol in the context of the formula. For example, f , which has the type of
identifier gets a default role of Latin letter assigned, while no additional information is known. Once
more knowledge on its semantic meaning is available, its role is refined. For example, in the expression
f(x) it would get the role of a function, while its role remains unchanged in f + g.

A central heuristic then builds term trees from flat structures by promoting relations and defining
operator precedence orders as well as determining properly delimited structures. As an example of this
heuristic we observe how the quadratic equation ax2 + bx + c = 0 is rewritten from its Presentation
MathML representation into its semantic interpretation below:

<math>
<mi>a</mi>
<msup>
<mi>x</mi>
<mn>2</mn>

</ msup>
<mo>+</mo>
<mi>b</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mn>0</mn>

</ math>

=

+

·

a ̂
x 2

·

b x

c

0

Observe that the transformation tries hard to recognise elided multiplications. In addition, our
procedure contains a number of heuristics, in particular to (1) determine potential function appli-
cations, (2) break up symbol sequences into elided products, (3) recognise scope and nesting of big
operators (e.g., sums, integrals), (4) distinguish tables into matrices, vectors, and case statements,
(5) combine punctuated expressions and determine the meaning of ellipses.

Technically the tree is constructed by analysing MathML elements, interpreting their type, role,
and font, and turning them into semantic nodes with parent pointer and a variable number of children.
In addition we have a notion of content elements for each node. This is a possibly empty list of semantic
nodes that are combined or abstracted over by this particular node.

For example, a node representing the application of a single operator like + to a variable number of
summands will have only the semantic nodes representing the summands as children, while retaining
all the intermediate occurrences of + in its list of content nodes. This allows us to keep a connection
between nodes of the semantic tree and elements in the original MathML structure for tasks like
synchronised highlighting or the semantic enrichment we will discuss in the next section.



Note that symbol sequences are only rewritten into implicit products when indicated by the Presen-
tation MathML. That is, two consecutive mi elements like <mi>b</mi><mi>x</mi> will be interpreted
as an elided product, while <mi>bx</mi> would not. Similarly, if explicit spacing information is given
between the mi, they would not be considered a product.

2.2 Embedding into MathML

The basic idea of embedding the semantic tree into MathML is by modelling the components of the
tree via additional data attributes in the individual elements of the MathML expression. We have
decided on data attributes over alternative means, e.g., exploiting Presentation MathML’s semantics
tag, RDFa, or micro data, for a number of reasons: primarily, we want to embed the semantic structure
within the presentation element tree to provide a different view of the MathML expression, rather than
having a new structure in parallel instead. Data attributes provide a fast and standardized means of
retrieving information from the DOM (the tree structure representing the HTML document), which
is fully consistent with HTML5 practices.

In practice, we add new data attributes to reflect both content and structure of the semantic
tree. The former are attributes reflecting type, role, and font information stored in each node of the
tree. The latter effectively provide each node with a unique semantic id, and, if necessary, a parent
pointer and lists of pointers to children and content nodes. In addition we have attributes that provide
administrative information with respect to artefacts that have been introduced or omitted due to the
mapping onto the MathML expression.

In the majority of cases the embedding is straight forward, with as little modification to the
original MathML expression as possible. However, this can not always be maintained for more complex
structures. As a consequence we have the following cases to consider:

Extra Groupings are often necessary to break up flat rows of operators and identifiers in order to
reflect the term tree structure of the inferred semantics. These are achieved by grouping elements
inside additional mrow elements to reflect the layers of the term tree.

Added Invisible Elements are necessary when the semantic interpretation determines elided operators,
such as implicit multiplications or function applications. Additional mo elements will be introduced
containing unicode characters like invisible times, invisible comma, or function application.

If we consider again the example of the quadratic equation, the enriched Presentation MathML
will look like this (the data-semantic- prefix for the attributes has been removed for easier reading):

<math type=” r e l s e q ” role=” equa l i t y ” id=”16” children=”15 ,10 ” content=”9”>
<mrow type=” in f i x op ” role=” add i t i on ” id=”15” children=”12 ,14 ,8 ” content=”4 ,7 ” parent=”16”>
<mrow type=” in f i x op ” role=” imp l i c i t ” id=”12” children=”0 ,3 ” content=”11” parent=”15”>
<mi type=” i d e n t i f i e r ” role=” l a t i n l e t t e r ” id=”0” parent=”12”>a</mi>
<mo type=” operator ” role=”mu l t i p l i c a t i o n ” id=”11” parent=”12” added=” true ”>&#x2062 ;</mo>
<msup type=” sup e r s c r i p t ” role=” l a t i n l e t t e r ” id=”3” children=”1 ,2 ” parent=”12”>
<mi type=” i d e n t i f i e r ” role=” l a t i n l e t t e r ” id=”1” parent=”3”>x</mi>
<mn type=”number” role=” in t e g e r ” id=”2” parent=”3”>2</mn>
</ msup>
</ mrow>
<mo type=” operator ” role=” add i t i on ” id=”4” parent=”15”>+</mo>
<mrow type=” in f i x op ” role=” imp l i c i t ” id=”14” children=”5 ,6 ” content=”13” parent=”15”>
<mi type=” i d e n t i f i e r ” role=” l a t i n l e t t e r ” id=”5” parent=”14”>b</mi>
<mo type=” operator ” role=”mu l t i p l i c a t i o n ” id=”13” parent=”14” added=” true ”>&#x2062 ;</mo>
<mi type=” i d e n t i f i e r ” role=” l a t i n l e t t e r ” id=”6” parent=”14”>x</mi>
</ mrow>
<mo type=” operator ” role=” add i t i on ” id=”7” parent=”15”>+</mo>
<mi type=” i d e n t i f i e r ” role=” l a t i n l e t t e r ” id=”8” parent=”15”>c</mi>
</ mrow>
<mo type=” r e l a t i o n ” role=” equa l i t y ” id=”9” parent=”16”>=</mo>
<mn type=”number” role=” in t e g e r ” id=”10” parent=”16”>0</mn>
</ math>

Observe that the tree now contains both extra groupings and invisible-times applications, with the
latter being marked as newly added.



Empty Elements need to be added in case the semantic interpretation contains mandatory, possibly
empty elements, that might not be present in the presentation. As an example, consider an integral
expression consisting of three parts: (1) the integration sign, possibly with embellishments like limits,
(2) the integrand, and (3) the integral variable. If either of the latter two components is not present,
they are represented by an empty element. This is reflected by introducing an empty mrow element
in the Presentation MathML tree, which does not change the visual appearance of the rendered
expression.

Collapsed Elements can occur when the semantic interpretation introduces additional structure that
can not easily be reflected in the presentation element without potentially altering the visual rendering.
For example, when semantically indicated, combined sub- and superscript elements will be represented
as a subscript with a superscript. This leads to an additional layer in the tree that is not present in
the presentation element, and that can not be introduced without changing rendering behaviour.
Consequently, the omitted structure is given in a Lisp-like notation to avoid unconnected pointers and
to ease potential reconstruction of the semantic tree from the attributes alone.

Special Cases are complex elements such as mfenced or mmultiscripts. For example, in the case of the
former, the semantic interpretation needs to consider components of the expression that are only given
implicitly via element attributes. In detail, mfenced allows an author to specify both fences via the
open and close attributes; the absence of fences is enforced by giving empty string arguments as the
values for those attributes, while omitting the attributes altogether leads to parentheses being inserted
as the default. Similarly, a separators attribute allows the author to specify a list of characters
that should be rendered between children of the mfenced element. For semantic interpretation these
attributes need to be expanded and represented explicitly in the semantic tree, which in many cases
makes it difficult and sometimes impossible to map the semantic structure back onto the original
MathML element. Consequently, the original mfenced element is replaced by an explicit mrow, with
opening and closing fences as well as separators modelled as proper new MathML elements. While
this might lead to a considerably altered MathML expression, it is necessary to capture fully semantic
meaning, as we observe with the following example, where the separators attribute is abused to
model operations as well:

{x+ y, x, y}

<mfenced
open=”{” close=”}”
separators=”+,”>
<mi>x</mi>
<mi>y</mi>
<mi>x</mi>
<mi>y</mi>

</ mfenced>

{}

,

+

x y

x y

<mrow type=” fenced ” role=” l e f t r i g h t ” id=”11” children=”10” content=”7 ,8 ”>
<mo type=” fence ” role=” open ” id=”7” parent=”11” added=” true ”>{</mo>
<mrow type=”punctuated” role=” sequence ” id=”10” children=” 9 ,5 ,2 ,6 ,3 ”

content=”5 ,6 ” parent=”11”>
<mrow type=” in f i x op ” role=” add i t i on ” id=”9” children=”0 ,1 ” content=”4” parent=”10”>
<mi type=” i d e n t i f i e r ” role=” l a t i n l e t t e r ” id=”0” parent=”9”>x</mi>
<mo type=” operator ” role=” add i t i on ” id=”4” parent=”9” added=” true ”>+</mo>
<mi type=” i d e n t i f i e r ” role=” l a t i n l e t t e r ” id=”1” parent=”9”>y</mi>
</ mrow>
<mo type=”punctuat ion ” role=”comma” id=”5” parent=”10” added=” true ”> ,</mo>
<mi type=” i d e n t i f i e r ” role=” l a t i n l e t t e r ” id=”2” parent=”10”>x</mi>
<mo type=”punctuat ion ” role=”comma” id=”6” parent=”10” added=” true ”> ,</mo>
<mi type=” i d e n t i f i e r ” role=” l a t i n l e t t e r ” id=”3” parent=”10”>y</mi>
</ mrow>
<mo type=” fence ” role=” close ” id=”8” parent=”11” added=” true ”>}</mo>
</ mrow>



3 Responsive Equations

Responsive design enhances a core feature of HTML: reflow. Originally focusing on re-arranging and
optimising content, new tools transform the content itself, e.g., cropping images[12], abstracting icons
[10], or modifying tables [14].

Reflowing mathematics poses a great challenge as it combines the properties of text, tables, and
graphics into a single problem. While good line-breaking algorithms exist for print, they are often
counter-productive on the web, damaging legibility of larger equations beyond repair. The problem
is exacerbated by the fact that content is created with print in mind, manually fitting it to page
dimensions. Manual line breaks, arrangements across tabular layout, and other such tweaks make a
sensible reflow harder to accomplish.

We leverage the semantic enrichment to create responsive equations, a completely novel way of
dynamically presenting math on small screens. Before approaching rendering on small screens, a
crucial consideration lies in the user story for accessing documents with mathematical content on
small devices in general. In other words, the design has to adapt to the specific use case that an
author and designer has identified.

Our approach is targeted at what might be called casual reading. This includes scenarios such as
browsing through lists of recent publications (e.g., repository or journal news feed), cross-reading a
publication, and looking up references. In these use cases, the reader’s primary interest does not lie in
being able to fully access every MathML fragment immediately. Rather, in this scenario we need to
reduce visual noise to enable users to efficiently reach their goal. At the same time, the mathematical
fragment cannot simply be hidden as it often serves a structural role in the overall content and can also
be the specific target of the user (e.g., a labelled equation). This might be compared to the rendering
of maps, though in reverse: when a user zooms out, they do not want the map to be cluttered with
pointers to the most detailed level of information, and yet they need to be able to access that level of
detail should they need to.

Therefore, our current approach is (a) to collapse and re-arrange sub-expressions on small screens
to provide the reader with a meaningful overview of the expression and (b) to implement an interface
for exploration of collapsed equations. We first discuss the machinery for the exploration and present
examples in the next section.

3.1 Exploring Equations

Since an equation in a collapsed state hides parts of its content, the responsive rendering mode requires
a user interface for exploration. For the first iteration of this project we have chosen a straight-forward
implementation using MathML’s maction element with actiontype set to toggle, cf. [2, 3.7.1]. This
will allow users to explore the content using click, keyboard, and touch events. The maction elements
are nested so that only the next level of the collapse is revealed.

The element indicating collapsed content is currently a simple Unicode construction, JXI, with
X indicating the top-level structure that was collapsed. Currently, we differentiate the following struc-
tures:
– Matched fences: J[)I etc.
– Function application: Jf()I
– Fraction: J/I
– Surds: J

√
I

– Scripts: J�
.I, J�.I, J�:I

– Large operators: JΣI etc.

– Repeated operators: J+I etc.
– Long identifier: JxI
– Long number: J#I
– Long text: J. . .I
– Vector: J〈:〉I
– Square Matrix: J[::]I

– Row vector: J〈· · · 〉I
– Column vector: J〈...〉I
– Unknown matrix: J(::)I
– Punctuated text: J...I
– Punctuated gen.: J,I etc.

Although currently fixed, authors will be able to customize these placeholders in the future, using
Unicode, CSS, or SVG.

While maction toggles are simple and standard, the user experience is not ideal. For example, it
is too easy to accidentally trigger a collapse of part of the equation. Similarly, it is difficult to quickly



un-collapse the entire equation. As we gain experience, we hope to be able to augment the regular
toggle and feed that experience back into the development of the MathML specification.

3.2 Complexity Measure

Since collapsing is intended to shorten an expression when space is at a premium, one approach to
determining what to collapse would be based on the widths of the various terms. For our algorithm,
however, the widths of the terms are not yet known (as the widths are not computed until the terms
are typeset for output, while the potential collapses are determined before the output process begins).
Instead of width, our approach is to use a measure of complexity of the terms as a surrogate for width.
(As a side-effect, this makes it possible to collapse for reasons other than saving space – see the section
on size versus content in section section 5 below.)

Each term in the MathML expression is assigned a complexity value based on the length of its
content or the complexity of its children. A MathML token element (like an identifier or a number)
is given a complexity determined by the number of characters in the text of the element; a longer
identifier or number has a higher complexity (since we want complexity to act as a replacement for
width). Other elements, like square roots, or fractions, have their complexity determined by combining
the complexity of their child nodes.

For example, an expression that consists of a combination of three terms will have a complexity
that is the sum of the complexities of the individual terms and the complexities of the operators
that join them. Because we want combinations that involve more terms to be more likely to collapse
than those with few terms, the complexity is augmented by a factor based on the number of children
(regardless of the complexities of the individual terms). So in the sum a+ b, suppose the a, +, and b
are each assigned a complexity of 1, then the complexity of the sum might be 6 (3 for the sum of the
complexities of the element of the sum, and 3 more for the fact that there are three children of the
expression).

In a similar fashion, a fraction might have a complexity that is the sum of the complexities of the
numerator and denominator, plus an additional amount for being a fraction, while a square root’s
complexity might be the complexity of its argument plus something more for being a square root.

In this way, each term in the MathML tree is given a complexity. This value is used to decide
whether the term should be collapsible or not. The cut-off value that determines this is based on the
semantic type of the MathML element. For example, if the cut-off value for a sum was set to 12, then
the sum a + b + c (with a complexity of 10) would not be collapsible, while a + b + c + d (with a
complexity of 14) would be, and 100 + 100 + 100 (with a complexity of 14.5) would also be collapsible.

All the parameters involved in the complexity computations (e.g., the weight of each character in
a token element, the weights of child terms, the extra amount for a fraction or root, and the cut-off
values for collapsing) are stored in tables that can be adjusted by the page author, should the default
settings not provide suitable collapses for the equations in use on the page.

4 Examples and Initial Results

For development and experimentation we avoid manual doctoring of examples, but look for exam-
ples “in the wild”; this aligns with our focus on handling arbitrary content well, not on handling
well-prepared content excellently. We therefore give an overview of the core features and challenges
of our approach, by further exploring the example from the introduction that we have found on
math.stackexchange.com as the following original LATEX code:

\begin{ a l i g n }
I \ nu (\ nu ˆ{−1} ,1)
&=\underbrace {\ f r a c {\ pi ˆ2}{4}\ ln\ left (\ f r a c {(1+\ nu )ˆ{1+\ nu }}{\ nu ˆ\ nu}
\ right )−\ f r a c {7\ zeta (3)}{8}\ nu } {\ t ext {Let t h i s be
C}}+2\int ˆ\ f r a c {1−\nu}{1+\nu } 1\ f r a c {\ chi 3 ( v)}{(1+v)ˆ2}{\ rm d}v\\
&=C−\left .\ f r a c {2\ chi 3 ( v)}{1+v}\ right |ˆ\ f r a c {1−\nu}{1+\nu} 1+2\ int ˆ\ f r a c {1−\nu}
{1+\nu } 1\ f r a c {\ chi 2 ( v)}{v(1+v)}{\ rm d}v\\
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&=C+(1−\nu )\ chi 3\ left (\ f r a c {1−\nu}{1+\nu}\ right )−\ f r a c {7\ zeta (3)}{8}
−\left .\ c o l o r {white }{\ f r a c {1}{1}}2\ chi 2 ( v )\ ln (1+v)\ right |ˆ\ f r a c {1−\nu}{1+\nu}
1+\ int ˆ\ f r a c {1−\nu}{1+\nu } 1\ f r a c {\ ln (1+v)\ ln\ left (\ f r a c {1+v}{1−v}\ right )}{v}{
\rm d}v\\
&=C+(1−\nu )\ chi 3\ left (\ f r a c {1−\nu}{1+\nu}\ right )−\ f r a c {7\ zeta (3)}{8}
+2\chi 2\ left (\ f r a c {1−\nu}{1+\nu}\ right )\ ln\ left (\ f r a c {1+\nu }{2}\ right )+\ f r a c {
\pi ˆ2}{4}\ ln {2}\\
&\ \ \ \
+\ f r a c {1}{2}\ int ˆ\ f r a c {1−\nu}{1+\nu } 1\ f r a c {
\lnˆ2(1+v)−\lnˆ2(1−v)+\ln ˆ2\ left (\ f r a c{1−v}{1+v}\ right )}{v}{\ rm d}v
\ end{ a l i g n }

Note that the source contains a few artefacts such as an invisible (in fact, white) fraction as well
as manual spacing.

To provide a real-world experience, we have simulated a Nexus 5 device using the developer tools
of the Chrome browsers, with a simulated display size of 360px× 640px. In our sample HTML page,
the font size for the mathematical fragment is ∼18.5px.1

4.1 Line-breaking

Fig. 1. Screenshot: linebreaking

Applying line-breaking programmatically to this
kind of equation is challenging. Align environ-
ments have to be interpreted as mtable ele-
ments as they might have equation labels at-
tached to them which can only be implemented
inside mtable structures. Line-breaking does not
touch the table structure and can only perform
line-breaks within tables. The results are often
visually complicated.

In Figure 1 we see the result of rendering with
line-breaking2 (no enrichment applied) on a sim-
ulated smart-phone device. The first observation
is that the initial column (which consists only
of the Iν(ν−1, 1) to the left of the initial equal
sign) takes up most of the screen already, push-
ing the second column (which contains all the
rest of the mathematics) outside the viewport. In
other words, line-breaking fails fundamentally to
fit the content on the screen, just as with other
table structures.

For the screenshot, we simulated a swipe to
bring the second column into view. Here we en-
counter additional problems. Since line-breaking
occurs within each cell, there is no way to align
the breaks across rows. Instead, iterated line-
breaks in different cells produce an uneven ren-
dering. In addition, we see how the quality of
the markup negatively affects the layout, e.g., in
the top row the linebreak splits a product that
forms a single summand. In short, the result is
very difficult to process for the reader. See also
subsection 4.3 for further discussion of line-breaking.

1 The precise font size is determined on the fly to match ex-heights with the surrounding font, which may
differ across devices.

2 MathJax implements most of the MathML specification regarding line-breaking.



4.2 Collapsing

In comparison, the (maximally collapsed) responsive rendering of the equation will look like the
following.

Fig. 2. Screenshot: responsive rendering

Jf()I = J+I

= J+I

= J+I

= J+I+J·I+J·I
J...I

With a width of ∼258px, this rendering fits
well even on very small screens and avoids addi-
tional noise. While it collapses the details, it does
so gracefully, retaining the fundamental layout.

Since the screen size of the simulated Nexus 5
device is actually larger, our current implemen-
tation will automatically expand sub-expressions
to expose as much detail as possible as seen in
Figure 2.

As described earlier, our current implemen-
tation uses standard maction elements to enable
the user to explore the equation. Each place-
holder serves as a toggle, expanding nested lay-
ers of the equation. To provide a final example,
a reader might then want to explore particular
aspects of the expression, such as the evolution
of the integral term; a sample exploration is cap-
tured in Figure 3.

Fig. 3. Screenshot: exploring responsive rendering

As can be seen, the user interface for explo-
ration is still in its infancy and we do not, in
fact, expect to come up with a smooth imple-
mentation. From personal experience, this ren-
dering changes the ‘reading of’ (or interaction
with) an expression significantly and only real
user feedback will determine which aspects need
to be modified.

4.3 Improving regular rendering

A significant problem in professional publishing
workflows lies in the low quality of Presenta-
tion MathML markup. MathML fragments are
often produced by third-party vendors who con-
vert documents into XML. MathML fragments
are either generated from other input formats such as TEX/LATEX code or manually recreated from
other renderings (image, pdf). In the latter case, it is unrealistic to expect such conversion specialists
to have enough domain-specific knowledge to capture nuances in the semantics and presentation of
the mathematical fragments. Even in the case of a converter being used, the source markup is often
of low quality, e.g., TEX lacking appropriate \left ... \right structures). This leads to very flat
MathML fragments. Ultimately, the results of this process are too often of poor quality.



The enriched Presentation MathML can resolve some of these issues and thus improve rendering
in general. This is due to gently enhancing the MathML structure, e.g., with missing mrows, matched
fences, and so on.

Fig. 4. Screenshot: linebreaking without enrichment

The following example reconstructs the first
few terms of [3, Eq. 17].∣∣∣∣τ0∣∣∣∣ =

∣∣∣∣∑
m

(
ab + bm

)∣∣∣∣
The reason for these oversized fences lies in

the flat structure of the underlying Presenta-
tion MathML. MathML specifies that stretchy
fences should match the height of the tallest
sub-expression within an mrow. The lack of any
grouping in the MathML source forces renderers
to have all fences match the size of the

∑
.

After enriching the original MathML, match-
ing fences are identified and additional mrows in-
troduced, leading to improved rendering equiva-
lent to the following.

|τ0| =

∣∣∣∣∣∑
m

(ab + bm)

∣∣∣∣∣
While this may seem like a mild effect, we can

only stress how wide-spread and persistent such
problems are in published MathML.

Additionally, these subtle improvements to
the markup make it easier for line-breaking algo-
rithms to determine good breakpoints. To revisit
our example, Figure 4 shows a screenshot with
line-breaking after semantic enrichment. Note
how the second line of the first cell and the third
line of the third cell have improved by grouping
the multiplication as well as addition correctly.

Anecdotal evidence from sharing our work
with other researchers suggests this rendering
could have the unexpected side effect to alert au-
thors to bad practices in their markup. That is,
researchers responded to the new rendering by stating that they want to author in a way that renders
well responsively. While clearly biased, it will be an interesting avenue for further testing.

5 Discussion and Future Work

Although the main features of our approach are implemented and demonstrate the power of a respon-
sive mode for mathematical expressions, there are still a number of issues that need to be resolved,
for both the semantic enrichment and the responsive equations. For the former, we need to improve
in particular heuristics for matching brackets and dealing with embellished fences. For the latter, we
need to deal more elegantly with multiline equations and we want to experiment with ways to indicate
where formulas can be collapsed to prevent users from randomly clicking on symbols.

Some other questions we will be looking at in the future are:



Simultaneous Expansion Currently equations are collapsed and expanded step-wise, independently in
different components of a formula. But actions could be coordinated, that is, the expansion or collapse
of a particular sub-formula would trigger the corresponding action on similar sub-formulas elsewhere
in the equation. Coordinating actions would be particularly important when working on small form
factors to support meaningful zooming and panning.

Measures of Complexity The measure of complexity we use is based mainly on an attempt to determine
visual layout size. In the future we want to experiment with different measures that can capture other
notions, such as giving precedence to certain operators or expressions, thereby defining a measure of
interestingness of a sub-formula. Consequently, we could define clear levels of abstraction in a formula,
which would be helpful to coordinate simultaneous expansion as discussed in the previous paragraph.

In a similar vein, we currently have no means of indicating how much content is collapsed in a
particular position. A more precisely defined measure of complexity could help for this as well.

Size vs Content While collapsing content usually re-
duces the space used by an expression, this is not always
the case. In particular, in deeply nested expressions, re-
cursive collapses might make sense from a semantic point
of view, but might not always be necessary for conserv-
ing space.

We observe this phenomenon with the expansion of
an identity of Ramanujan given on the right hand side.
We can see that already after the second or third step
of the expansion there is hardly any space reduction in
the size of the formula, while we are effectively abstract-
ing homogeneously over the very similar formulas under
the fraction. Thus, if we were purely interested in visual
display, if sufficient space is available it would not make
sense to go through all the single expansion steps.

1
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On the other hand, to demonstrate the effect of the infinite recursion in the formula, e.g., for teaching
or for the purpose of summarising the formula, the above sequence of collapse actions is perfectly
suitable. Consequently, actions should be supported on different levels, those that primarily aim to-
wards responsive visual rendering versus those that allow for meaningful step-wise exploration of the
content.

Accessibility One major goal of our work is to provide enhanced facilities to make Mathematics on
the web fully accessible for people with visual impairments and other print disabilities. The collapse
approach allows already reduction of complexity of a structure that can aid readers with print disabil-
ities, like dyslexia. In addition, the summarisation effect should be exploitable to provide advanced
explanations for structures via aural rendering. The current semantic approach has been originally
developed in the context of the ChromeVox screen reader and forms the core of the Maths to speech
translation in the MathML cloud project (cf. mathmlcloud.org). With the new embedded format it
should now also be able to summarise expressions and translate sub-expressions on the fly, regardless
of whether or not a screen reader can handle MathML.

Content MathML At the moment our semantic enrichment process provides enhanced Presentation
MathML only. However, there is no theoretical hurdle in turning the current semantic structure into
full blown Content MathML. While we give many symbols, like operators and relations, a default type
and role, we stop short of mapping them to actual semantic meaning in the sense of determining, for
example, for a plus symbol that it is addition between numbers or elements of an algebraic structure.
One future step could be to attempt this step and generate Content MathML, possibly taking addi-
tional context information into account. Given the breadth of MathML content on the web, however,

https://www.mathmlcloud.org/


and its (lack of) quality, we assume that generated Content MathML will be rather poor in many
cases.

6 Conclusions

We have presented a first approach at implementing responsive mathematical equations, which exploits
a semantic interpretation of Presentation MathML formulas. The semantics we employ uses a shallow
interpretation of an equation rather then a precise rendering of the full semantics of an expression and
all its components. This approach serves our primary goal: for heuristics to be applicable to arbitrary
mathematics rather than to specific mathematical domains. This will not prevent it, however, from
misinterpreting more exotic mathematical notations. Moreover, we believe our semantic interpretations
can be an important intermediate step towards translation into full fledged semantic markup languages
like Content MathML [2].

As the project only started a few months prior to writing this paper, the work is not yet mature
enough to warrant systematic user testing. However, we have developed our approach in public, with
demonstrator websites available, and shared it with our community and supporters early and often.
Initial reactions from users to the collapsing equations were generally positive. Naturally this evidence
is anecdotal and statistically relevant user-experience studies should be done in the future.

Electronic Media Appendix

We have provided a number of web sites with demonstrators for responsive equations.
mathjax.github.io/MathJax-RespEq/Semantics-Lab/Struik.html contains excerpts from lectures on
Classical Differential Geometry. All display style equations are responsive either by mouse click or by
reducing display size.
mathjax.github.io/MathJax-RespEq/Semantics-Lab/Semantics-Lab-MML-linebreaking.html and
mathjax.github.io/MathJax-RespEq/Semantics-Lab/Semantics-Lab-TeX-linebreaking.html are pages
to experiment with input expressions. Observe that the latter two sites are development test sites and
therefore subject to code changes.
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