Raniere Silva and Frédéric Wang, devtechmathml@lists.mozilla.org
س = \frac{ب \pm \sqrt{ب^٢  ٤اج}}{٢ا}
$$\u0633\; =\; \backslash frac\{\u0628\backslash pm\backslash sqrt\{\u0628^\u0662\u0664\u0627\u062c\}\}\{\u0662\u0627\}$$
<xtex display="block">
\Gamma(t) =
\frac{1}{t} \prod_{n=1}^\infty
\frac{\left(1+\frac{1}{n}\right)^t}{1+\frac{t}{n}} =
\frac{e^{\gamma t}}{t} \prod_{n=1}^\infty
\left(1 + \frac{t}{n}\right)^{1} e^{\frac{t}{n}}
</xtex>
$$\backslash Gamma(t)\; =\; \backslash lim\_\{n\; \backslash to\; \backslash infty\}\; \backslash frac\{n!\; \backslash ;\; n^t\}\{t\; \backslash ;\; (t+1)\backslash cdots(t+n)\}=\; \backslash frac\{1\}\{t\}\; \backslash prod\_\{n=1\}^\backslash infty\; \backslash frac\{\backslash left(1+\backslash frac\{1\}\{n\}\backslash right)^t\}\{1+\backslash frac\{t\}\{n\}\}\; =\; \backslash frac\{e^\{\backslash gamma\; t\}\}\{t\}\; \backslash prod\_\{n=1\}^\backslash infty\; \backslash left(1\; +\; \backslash frac\{t\}\{n\}\backslash right)^\{1\}\; e^\{\backslash frac\{t\}\{n\}\}$$
Packaged  Hosted 



{
"version": "1.0.0",
"name": "App",
"description": "App short description",
"launch_path": "/index.html",
"icons": {
"128": "/img/icon128.png"
},
"developer": {
"name": "Your name or organization",
"url": "http://yourhomepagehere.org"
},
"default_locale": "en"
}