
The Scala-REPL + MMT as a Lightweight
Mathematical User Interface

Mihnea Iancu, Felix Mance, and Florian Rabe

Jacobs University, Bremen, Germany

Abstract. Scala is a general purpose programming language that in-
cludes a read-eval-print loop (REPL). Mmt is a general representation
language for formal mathematical knowledge implemented in Scala. Inde-
pendent recent developments permit combining them into an extremely
simple user interface.

Firstly, Scala introduced string interpolation – a convenient syntax that
permits escaping back and forth between strings and arbitrary Scala
expressions (while preserving type safety). Secondly, Mmt introduced
a notation-based text syntax and a rule-based evaluation engine for its
mathematical objects (which are based on OpenMath).

Combining these, users can enter and work with Mmt objects in the
Scala-REPL with so little overhead that it essentially behaves like a dedi-
cated Mmt-REPL – except for also providing the full power of Scala. Im-
plicit conversions (e.g., between integers represented in Mmt and Scala
integers) further blur the distinction between meta- and object language.

Mmt is highly extensible: Users can add new type systems and logics
as well as new theories and notations and evaluation rules. Thus, we
obtain a REPL-style interface for any language represented in Mmt with
essentially no effort.

1 Representing Languages in MMT

Mmt [RK13] is a generic, formal module system for mathematical knowledge
and is a basis for foundation-independent knowledge representation.

The Mmt language is designed to be applicable to a large collection of declar-
ative formal base languages and all Mmt notions are fully abstract in the choice
of the base language. Therefore, Mmt focuses on foundation-independence, scal-
ability and modularity.

Every Mmt declaration is identified by a canonical, globally unique URI.
Mmt symbol declarations subsume most semantically relevant statements in

declarative mathematical languages including function and predicate symbols,
type and universe symbols, and — using the Curry-Howard correspondence —
axioms, theorems, and inference rules. Their syntax and semantics is determined
by the foundation, in which Mmt is parametric.

The Mmt API [Rab13] is a Scala-based [OSV07] open source implementation
of the Mmt language and of a number of knowledge management services for it.

Declaring Symbols A theory declaration T = {Sym∗} introduces a theory with
name T containing a list of symbol declarations. A symbol declaration c : ω =
ω� # ν introduces a symbol named c with type ω, definiens ω� and notation
ν (all of which are optional).

Terms ω over a theory T are formed from symbols OMS(T?c) declared in
T , bound variables OMV(x), applications OMA(ω,ω1, . . . ,ωn) of a function ω to
a sequence of arguments, bindings OMBIND(ω, X,ω�) using a binder ω, a bound
variable context X, and a scope ω� as well as integers OMI(i) and floats OMF(f)
where i and f are integers and floats, respectively. This is a fragment of the
OpenMath language [BCC+04].

Remark 1. For readability we will write T?c instead of OMS(T?c) in the follow-
ing. Furthermore, we will write c instead of T?c when the theory T is clear from
the context.

Example 1. Figure 1 shows an Mmt theory Lists , based on the logical frame-
work LF [HHP93]. Lists declares natural numbers and lists as well as additional
operations on them (plus for naturals and append for lists). Using the Mmt

notation language, described below, we also declare the usual notations: infix +
, :: and ::: for plus, cons, and append, respectively.

theory Lists meta LF
tp : type
tm : tp → type # tm A1

nat : tp
zero : tm nat # o

succ : tm nat → tm nat # s A1

plus : tm nat → tm nat → tm nat # A1 +A2

list : tp → tm nat → tp # list A1 A2

nil : {A} tm list A zero
cons : {A,N} tm A → tm list A N → tm list A (s N)

A3 :: A4

append : {A,M,N} tm list A M → tm list A M → tm list A (M +N)
A4 ::: A5

Fig. 1. Theory declaration in Mmt

Remark 2. The theory Lists from Figure 1 has the theory LF as meta-theory
which means that all symbols and notations declared in LF are available and
can be used in Lists .

Specifically, in Lists , we use the symbols for type, arrow (with notation
A1 → A2), and the Pi binder (with notation { V1 } S2) all of which are declared
in LF with the corresponding notations.

Adding Notations Notations act as the parsing and printing rules that trans-
form between abstract syntax and text-based concrete syntax (that supports

2

Unicode). A notation is a sequence of notation elements which can be either
delimiters (i.e. strings), argument markers (An), variables Vn and scopes Sn

where n is a number representing an argument position in the abstract syntax.
Variables and scopes are in principle used for binders (e.g. the Pi binder in LF),
and the majority of symbol notations only need delimiters and arguments. For
example, the notation for infix addition is given as A1 + A2. It implies that
conjunction is binary and constructs the application object.

It is typical to omit arguments if their value can be inferred from the re-
maining arguments. We call this implicit arguments. Therefore, we introduce a
simple convention: if a component number n is absent in a notation but a higher
number is present, then the missing component is assumed to be an implicit ar-
gument An. For instance, we use the notation A3 :: A4 for cons above meaning
that the first two arguments (the contained type A and the size N) are implicit.

We omit here the details regarding the parsing algorithm and only point out
that our notation language is more complex and also covers sequence arguments.
Furthermore, notations technically also include an integer precedence, which is
used to resolve ambiguities when multiple notations are applicable.

Adding Evaluation Rules Mmt allows users to declare evaluation rules for each
symbol [KMR13]. Intuitively, the evaluation rule of a symbol c acts as the im-
plementation of the computational semantics of c.

We give evaluation rules for plus and append, declared above in theory Lists.
For example, the rule for plus is declared as an Mmt assignment which maps
plus to a λ-expression (λ together with its notation ”=>” are declared in the
ScalaOM meta-theory). The λ-expression maps the arguments x, y of plus to
a Scala code snippet written between Mmt escape characters (shown here as
quotes).

A module within the Mmt-API, called the Universal OpenMath Machine
(UOM), translates the theory and the view to a Scala object and trait, respec-
tively. Each Mmt constant (e.g. plus) is translated to a Scala object which acts
as the Scala constructor and pattern matcher for that constant. As a result,
instead of writing e.g. OMA(OMS(”plus”), a, b) we can directly write plus(a, b)
to construct an Mmt term in Scala. Furthermore, the UOM translates each λ-
expression vars => snippet to a function whose arguments are vars and whose
body is snippet. These functions are stored by the UOM in a rule store S. When
given an expression E, the UOM exhaustively applies the rules in S on E.

Example 2 (Continuing Example 1). We give evaluation rules for plus and append,
declared above in theory Lists. The rules are declared as Mmt assignments
which map plus and append to Scala code snippets.

Given the evaluation rules from Figure 2, we can use the UOM to evalu-
ate OMA(plus,OMA(succ, zero),OMA(succ,OMA(succ, zero))) and reduce it to
OMA(succ,OMA(succ,OMA(succ, zero))) (i.e. in decimal notation 1 + 2 to 3).

3

view Impl : Lists → ScalaOM =
plus = (x : Term, y : Term) => "scala

y match {
case zero => x
case succ(z) => succ(plus(x, z))
case => plus(x, y)

}
"

append = (a : Term, m : Term, n : Term, ls1 : Term, ls2 : Term) "scala
ls1 match {
case nil => ls2
case cons(a, n, h, t) => cons(a, n, h, append(a, m, n, t, ls2))
case => append(a, m, n, ls1, ls2)

}
"

Fig. 2. Evaluation rules in Mmt

2 String Interpolation in Scala

Scala [OSV07] is a programming language that integrates the functional and
object-oriented paradigms. It compiles to Java bytecode and can be seamlessly
integrated with existing Java libraries. Scala also includes a read-eval-print loop
for interactive evaluation of expressions.

Scala recently introduced processed strings [Ode12] as a generalization of
string literals. A processed string consists of an identifier followed by a string
literal within which two forms of escaping are valid: (i) $var for individual
variables and (ii) ${ expr } for complex expressions where $var is syntactic
sugar for ${ var }.

Thus, a processed string is of the form:
id”text0 ${ expr1 } text1 · · · ${ exprn } textn ”
where id defines the interpolation function that processes the string.

Besides a few built-in interpolation functions, Scala permits users to declare
arbitrary custom interpolation functions id. These must take as arguments a
sequence of strings (the parts texti) and a sequence of typed expressions (the
expressions expri). String interpolation is type-safe: the argument types of id
define what expressions expri are legal.

3 An MMT-REPL

Interpolating MMT Expression We implemented two string processors for Mmt

terms. This allows us to combine and nest Mmt and Scala expressions and use
Mmt-specific services directly from the Scala shell.

(i) mmt, which calls the Mmt parser to evaluate an interpolated string literal
into an Mmt object and (ii) uom, which uses mmt but additionally calls the UOM

simplifier to perform computation on the resulting term.

4

mmt takes a sequence of strings texti and a sequence of Mmt-terms termi.
It concatenates the strings texti and inserts a fresh free variable xi for every
termi. The resulting string is parsed into an Mmt term as usual, and afterwards
each xi is substituted with termi.

For example, if the Scala variables a and b hold the Mmt-terms OMI(3)
and OMI(5), respectively, then mmt”$a + π + $b” is interpolated to the Mmt-
term OMA(plus,OMI(3),π,OMI(5)). And, given appropriate evaluation rules as
described in [KMR13], uom”$a+ π + $b” yields OMA(plus,OMI(8),π).

We can also escape back and forth between Scala and Mmt. For example, if
substitute(t, n, s) is the Mmt-function for substituting the variable named n in
the term t with s, then

mmt”π + ${substitute(mmt”x+ x”, ”x”, a)}”

yields OMA(plus,π,OMI(3),OMI(3)) by parsing the string then substituting ”x”
with a and a with its value OMI(3) in the resulting term.

In general, this has the effect that mmt”...” escapes from Scala into Mmt,
and ${...} escapes from Mmt into Scala.

An MMT-REPL Based on the string processors described above we can use
Mmt and the UOM directly in the Scala shell and to nest and combine Mmt

terms and Scala expressions.

Example 3 (Continuing Examples 1 and 2). Using the uom interpolator we can
integrate Mmt notations and evaluation rules inside the Scala environment. For
instance, in the example below we use the notations and evaluation rules for
symbols plus and append to perform operations on Mmt terms from the Scala
REPL.

1 > uom"s o + s (s o)"
2 s (s (s o)).
3 > uom"(o :: (s o) :: nil) ::: (o :: nil)"
4 (o :: (s o) :: o :: nil).

Note that, in the listing above, we show the result using Mmt notations (and
not the abstract syntax) for readability but, technically, it now also contains the
inferred values for the implicit types and arguments. For example, the subterm
o :: nil from the list above corresponds to OMA(cons, nat, zero, zero, nil) in ab-
stract syntax. Furthermore, its type is inferred as OMA(list, nat,OMA(succ, zero))
(i.e. list of type nat and length 1)

While notations do increase usability and readability, unary natural numbers
remain awkward to work with. But we also allow users to directly write numbers
in Mmt concrete syntax. They are automatically parsed into the OpenMath

counterparts: OMI for integers and OMF for floats.

Example 4. linalg2?vector refers to an Mmt declaration that implements the
OpenMath symbol for vectors. It also has the notation � SA � where � and �
are delimiters and SA is a sequence argument representing an arbitrary num-
ber of arguments from the abstract syntax (comma separated). Therefore, we

5

can use the notation to construct vectors of integers and the UOM to perform
computations on them (the evaluation rules for addition of OpenMath integers,
floats and vectors are already implemented [KMR13]).

1 > mmt"�1,2,3�"
2 OMA(linalg2?vector ,OMI(1),OMI(2),OMI(3))
3 > uom"�1,2,3� + �2,3,4�"
4 OMA(linalg2?vector ,OMI(3),OMI(5),OMI(7))

Implicit Conversions Furthermore, we use Scala implicit conversions to automat-
ically convert Scala terms to corresponding Mmt terms (e.g from Scala integers
to Mmt/OpenMath integers).

Example 5. After implementing the following implicit conversion from Scala in-
tegers to Mmt/OpenMath integers:

implicit def int2OM(i: Int) = OMI(i)

we can interpolate Scala integers into Mmt-specific string literals.
1 > var x = 3
2 > mmt"$x + ${4 - 2}"
3 OMA(arith1?plus,OMI(3),OMI(2))
4 > uom"$x + ${4 - 2}"
5 OMI(5)

Moreover, we can use implicit conversions in the opposite direction to be able
to use the result of computations performed by Mmt and the UOM in Scala.

Example 6. After implementing the implicit conversion from Mmt/OpenMath

to Scala integers we can use directly use them inside Scala expressions. In the
example below, ∗ and − are Scala operators, + is the notation of the Mmt

symbol plus and the final result is a Scala integer.
1 > 7 * uom"$x + ${4 - 2}"
2 35

Implicit conversion also works for more complex notions as long as there is
a Scala counterpart. Moreover, since the UOM automatically constructs Scala
objects for each Mmt symbol declaration, we can easily refer to and construct
Mmt objects from within Scala.

Example 7. For instance, we can define implicit conversions between Mmt and
Scala vectors. In the listing below, Scala automatically converts the Mmt term
vect into a Scala vector and then during the map operation, each Mmt integer
into the corresponding Scala integer finally yielding a Scala vector as a result.

1 > var vect = uom"vector 1 2 3"
2 OMA(linalg2?vector ,OMI(1),OMI(2),OMI(3))
3 > vect.map(x => 1 + x)}
4 Vector(2, 3, 4)

6

Applications Even though we only gave simple, self-contained examples here,
this integration can serve as the kernel of a wide variety of services that become
very easy to build around the Mmt interpolator.

In particular, any Scala or Java library can be used directly either to produce
the input or to process the results of computations done by Mmt and the UOM.
The output can then be fed back into Mmt for further computation. Moreover,
with implicit conversions this integration can be done seamlessly and with al-
most no overhead. For example, semantic services (type inference, presentation,
definition lookup, etc.) implemented in Mmt can be immediately used for the
resulting terms. Thus, it is straightforward to give a web interface for the Mmt

interpolator where the user enters terms and the system dynamically shows the
presentation MathML rendering of the term and its simplification result.

At the same time, because computation is implemented using evaluation
rules, it is trivial to make the computation steps explicit, as applications of eval-
uation rules. Then, the Mmt-REPL becomes an interactive E-learning system
by letting users choose the rules to be applied and providing solutions or vali-
dation. For instance, users can learn basic arithmetics by successively applying
arithmetic operations (addition, multiplication, etc.) while Mmt can, at each
step, direct or check the application order and computation result.

4 Conclusion

The combination of the Mmt notation language and Scala string interpolation
yields an input language for mathematical objects that permits arbitrary escap-
ing between Scala and Mmt. This turns the Scala REPL into an Mmt-REPL
that gives users access to notations and computation rules defined in Mmt,
the syntax manipulation functions defined in the Mmt API, and any custom
function defined in arbitrary Java/Scala packages.

Clearly, this Scala/MMT-REPL does not give us a powerful computer alge-
bra system. But, it is interesting to consider what is missing. Indeed, we can
easily imagine building a practical CAS on top of it simply by adding symbols,
notations, and evaluation rules.

This has the appeal that users can write mathematical algorithms using a
strongly typed and widely used general purpose programming language. More-
over, it is easy to integrate with existing systems. Existing CASs can be used
by simply adding special symbols for them and adding computation rules that
simplify, for example, OMA(maple, t) into the result of calling Maple on t.

References

BCC+04. S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and
M. Kohlhase. The Open Math Standard, Version 2.0. Technical report, The
Open Math Society, 2004. See http://www.openmath.org/standard/om20.

HHP93. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, 1993.

7

http://www.openmath.org/standard/om20

KMR13. M. Kohlhase, F. Mance, and F. Rabe. A Universal Machine for Biform
Theory Graphs. In D. Aspinall, J. Carette, C. Lange, and W. Windsteiger,
editors, Intelligent Computer Mathematics. Springer, 2013. to appear.

Ode12. Martin Odersky. SIP 11: String interpolation and formatting. http://docs.
scala-lang.org/sips/pending/string-interpolation.html, January 15,
2012.

OSV07. M. Odersky, L. Spoon, and B. Venners. Programming in Scala. artima, 2007.
Rab13. F. Rabe. The MMT API: A Generic MKM System. In D. Aspinall,

J. Carette, C. Lange, and W. Windsteiger, editors, Intelligent Computer
Mathematics. Springer, 2013. to appear.

RK13. F. Rabe and M. Kohlhase. A Scalable Module System. Information and
Computation, pages 1–95, 2013. to appear; see http://kwarc.info/frabe/
Research/RK_mmt_10.pdf.

8

http://docs.scala-lang.org/sips/pending/string-interpolation.html
http://docs.scala-lang.org/sips/pending/string-interpolation.html
http://kwarc.info/frabe/Research/RK_mmt_10.pdf
http://kwarc.info/frabe/Research/RK_mmt_10.pdf

	1 Representing Languages in MMT
	2 String Interpolation in Scala
	3 An MMT-REPL
	4 Conclusion

